Framework for developing and evaluating ethical collaboration between expert and machine
- URL: http://arxiv.org/abs/2411.10983v1
- Date: Sun, 17 Nov 2024 06:49:38 GMT
- Title: Framework for developing and evaluating ethical collaboration between expert and machine
- Authors: Ayan Banerjee, Payal Kamboj, Sandeep Gupta,
- Abstract summary: Precision medicine is a promising approach for accessible disease diagnosis and personalized intervention planning.
By leveraging artificial intelligence (AI), precision medicine tailors diagnosis and treatment solutions to individual patients.
However, the adoption of AI in medical applications faces significant challenges.
This paper proposes a framework to develop and ethically evaluate expert-guided multi-modal AI.
- Score: 4.304304889487245
- License:
- Abstract: Precision medicine is a promising approach for accessible disease diagnosis and personalized intervention planning in high-mortality diseases such as coronary artery disease (CAD), drug-resistant epilepsy (DRE), and chronic illnesses like Type 1 diabetes (T1D). By leveraging artificial intelligence (AI), precision medicine tailors diagnosis and treatment solutions to individual patients by explicitly modeling variance in pathophysiology. However, the adoption of AI in medical applications faces significant challenges, including poor generalizability across centers, demographics, and comorbidities, limited explainability in clinical terms, and a lack of trust in ethical decision-making. This paper proposes a framework to develop and ethically evaluate expert-guided multi-modal AI, addressing these challenges in AI integration within precision medicine. We illustrate this framework with case study on insulin management for T1D. To ensure ethical considerations and clinician engagement, we adopt a co-design approach where AI serves an assistive role, with final diagnoses or treatment plans emerging from collaboration between clinicians and AI.
Related papers
- Artificial Intelligence in Pediatric Echocardiography: Exploring Challenges, Opportunities, and Clinical Applications with Explainable AI and Federated Learning [0.9866581731906279]
This study offers a comprehensive overview of the limitations and opportunities of AI in pediatric echocardiography.
It emphasizes the synergistic workflow and role of XAI and FL, identifying research gaps, and exploring potential future developments.
Three relevant clinical use cases demonstrate the functionality of XAI and FL with a focus on (i) view recognition, (ii) disease classification, (iii) segmentation of cardiac structures, and (iv) quantitative assessment of cardiac function.
arXiv Detail & Related papers (2024-11-15T15:03:34Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
This study focuses on the clinical evaluation of medical Synthetic Data Generation using Artificial Intelligence (AI) models.
The paper contributes by a) presenting a protocol for the systematic evaluation of synthetic images by medical experts and b) applying it to assess TIDE-II, a novel variational autoencoder-based model for high-resolution WCE image synthesis.
The results show that TIDE-II generates clinically relevant WCE images, helping to address data scarcity and enhance diagnostic tools.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
Inherited retinal diseases (IRDs) are a diverse group of genetic disorders that lead to progressive vision loss and are a major cause of blindness in working-age adults.
Recent advancements in artificial intelligence (AI) offer promising solutions to these challenges.
This review consolidates existing studies, identifies gaps, and provides an overview of AI's potential in diagnosing and managing IRDs.
arXiv Detail & Related papers (2024-10-10T03:14:51Z) - Establishing Rigorous and Cost-effective Clinical Trials for Artificial Intelligence Models [18.240773244542474]
A profound gap persists between artificial intelligence (AI) and clinical practice in medicine.
State-of-the-art and state-of-the-practice AI model evaluations are limited to laboratory studies on medical datasets or direct clinical trials with no or solely patient-centered controls.
For the first time, we emphasize the critical necessity for rigorous and cost-effective evaluation methodologies for AI models in clinical practice.
arXiv Detail & Related papers (2024-07-11T14:37:08Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.
As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.
The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by
Integrating Expert Knowledge and Interpretable Data-driven Intelligence [28.144658552047975]
This study investigates the performance, interpretability, and clinical utility of knowledge-guided diagnosis model (KGDM) in the diagnosis of infectious keratitis (IK)
The diagnostic odds ratios (DOR) of the interpreted AI-based biomarkers are effective, ranging from 3.011 to 35.233.
The participants with collaboration achieved a performance exceeding that of both humans and AI.
arXiv Detail & Related papers (2024-01-14T02:10:54Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
We propose the first foundational framework for early and timely diagnosis.
It builds on decision-theoretic approaches to outline the diagnosis process.
It integrates machine learning and statistical methodology for estimating the optimal personalized diagnostic path.
arXiv Detail & Related papers (2023-11-26T14:42:31Z) - Explainable AI in Orthopedics: Challenges, Opportunities, and Prospects [0.5277024349608834]
This work emphasizes the need for interdisciplinary collaborations between AI practitioners, orthopedic specialists, and regulatory entities to establish standards and guidelines for the adoption of XAI in orthopedics.
arXiv Detail & Related papers (2023-08-09T04:15:10Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.