論文の概要: M3TR: A Generalist Model for Real-World HD Map Completion
- arxiv url: http://arxiv.org/abs/2411.10316v3
- Date: Mon, 10 Mar 2025 18:24:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 19:16:20.057423
- Title: M3TR: A Generalist Model for Real-World HD Map Completion
- Title(参考訳): M3TR: 実世界のHDマップ完成のためのジェネリストモデル
- Authors: Fabian Immel, Richard Fehler, Frank Bieder, Jan-Hendrik Pauls, Christoph Stiller,
- Abstract要約: 実地図の変更についての研究は、HDマップの全ての部分が変化せず、前もって使用することができることを示している。
我々は、オフラインのHDマッププリエンプションと非オフラインのHDマッププリエンプションの両方に対する一般的なアプローチであるM3TRを紹介する。
以前のHDマップ要素を完全に活用し、クエリ設計を最適化することで、M3TRは既存のメソッドを+4.3 mAPで上回っている。
- 参考スコア(独自算出の注目度): 6.314412580044879
- License:
- Abstract: Autonomous vehicles rely on HD maps for their operation, but offline HD maps eventually become outdated. For this reason, online HD map construction methods use live sensor data to infer map information instead. Research on real map changes shows that oftentimes entire parts of an HD map remain unchanged and can be used as a prior. We therefore introduce M3TR (Multi-Masking Map Transformer), a generalist approach for HD map completion both with and without offline HD map priors. As a necessary foundation, we address shortcomings in ground truth labels for Argoverse 2 and nuScenes and propose the first comprehensive benchmark for HD map completion. Unlike existing models that specialize in a single kind of map change, which is unrealistic for deployment, our Generalist model handles all kinds of changes, matching the effectiveness of Expert models. With our map masking as augmentation regime, we can even achieve a +1.4 mAP improvement without a prior. Finally, by fully utilizing prior HD map elements and optimizing query designs, M3TR outperforms existing methods by +4.3 mAP while being the first real-world deployable model for offline HD map priors. Code is available at https://github.com/immel-f/m3tr
- Abstract(参考訳): 自動運転車はその運用にHDマップを頼っているが、最終的にはオフラインのHDマップは時代遅れになる。
このため、オンラインHDマップ構築手法では、ライブセンサデータを用いてマップ情報を推測する。
実地図の変更についての研究は、HDマップの全体は変化がなく、前もって使用することができることを示している。
そこで我々はM3TR(Multi-Masking Map Transformer)を導入する。
必要な基盤として,Argoverse 2 と nuScenes の基底真理ラベルの欠点に対処し,HD マップ補完のための最初の総合的ベンチマークを提案する。
単一の種類のマップ変更を専門とする既存のモデルとは異なり、デプロイには非現実的ですが、Generalistモデルはあらゆる種類の変更を処理し、Expertモデルの有効性にマッチします。
マップマスキングを拡張レギュレーションとして使うことで、前もって1.4mAPの改善を達成できるのです。
最後に、以前のHDマップ要素を完全に活用し、クエリ設計を最適化することで、M3TRは既存のメソッドを+4.3 mAPで上回った。
コードはhttps://github.com/immel-f/m3trで入手できる。
関連論文リスト
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
我々は、標準定義地図(SDMaps)を見るために知覚モデルを訓練することを提案する。
我々はSDMap要素をニューラル空間マップ表現やインスタンストークンにエンコードし、先行情報のような補完的な特徴を組み込む。
レーンセグメント表現フレームワークに基づいて、モデルはレーン、中心線、およびそれらのトポロジを同時に予測する。
論文 参考訳(メタデータ) (2024-11-22T06:13:42Z) - ExelMap: Explainable Element-based HD-Map Change Detection and Update [2.79552147676281]
本稿では,要素をベースとしたHDマップ変更検出と更新を行う新しいタスクを提案する。
ExelMapは、変更したマップ要素を具体的に識別する、説明可能な要素ベースのマップ更新戦略である。
これは、実世界のエンド・ツー・エンドの要素ベースのHDマップ変更の検出と更新に関する、初めての総合的な問題調査である。
論文 参考訳(メタデータ) (2024-09-16T11:17:33Z) - Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
高精細マップ(HDマップ)は、自動運転車の正確なナビゲーションと意思決定に不可欠である。
オンボードセンサーを用いたHDマップのオンライン構築が有望なソリューションとして浮上した。
本稿では,事前マップのパワーを活用して,これらの制約に対処するPresidedDriveフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-09T06:17:46Z) - Enhancing Vectorized Map Perception with Historical Rasterized Maps [37.48510990922406]
我々は,オンラインベクトル化地図知覚を高めるために,低コストな履歴ラスタライズドマップを利用するHRMapNetを提案する。
履歴化された地図は、過去の予測されたベクトル化された結果から容易に構築でき、貴重な補完情報を提供する。
HRMapNetは、ほとんどのオンラインベクトル化マップ認識手法と統合することができる。
論文 参考訳(メタデータ) (2024-09-01T05:22:33Z) - P-MapNet: Far-seeing Map Generator Enhanced by both SDMap and HDMap Priors [33.73570824028748]
提案するP-MapNetでは、P文字は、モデル性能を改善するために、マッププリエントの導入に重点を置いているという事実を強調している。
注意に基づくアーキテクチャは,SDMapスケルトンに適応的に対応し,性能を大幅に向上させる。
P-MapNetは、長い範囲でより大きな改善をもたらす、探究可能なソリューションです。
論文 参考訳(メタデータ) (2024-03-15T17:59:53Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) マップは、より安価で、世界中でカバーでき、スケーラブルな代替手段を提供する。
本稿では,オンライン地図予測にSDマップを統合する新しいフレームワークを提案し,Transformer を用いたエンコーダ SD Map Representations を提案する。
この拡張は、現在の最先端のオンラインマップ予測手法におけるレーン検出とトポロジー予測を一貫して(最大60%まで)大幅に向上させる。
論文 参考訳(メタデータ) (2023-11-07T15:42:22Z) - HDMapNet: An Online HD Map Construction and Evaluation Framework [23.19001503634617]
HDマップの構築は自動運転にとって重要な問題である。
従来のHDマップは、多くのシナリオでは信頼性の低いセンチメートルレベルの正確な位置決めと結合している。
オンライン地図学習は、自動運転車に先立って意味と幾何学を提供するための、よりスケーラブルな方法である。
論文 参考訳(メタデータ) (2021-07-13T18:06:46Z) - HDMapGen: A Hierarchical Graph Generative Model of High Definition Maps [81.86923212296863]
HDマップは道路路面の正確な定義と交通ルールの豊富な意味を持つ地図である。
実際の道路トポロジやジオメトリはごくわずかで、自動運転スタックをテストする能力は著しく制限されています。
高品質で多様なHDマップを生成可能な階層グラフ生成モデルであるHDMapGenを提案する。
論文 参考訳(メタデータ) (2021-06-28T17:59:30Z) - MP3: A Unified Model to Map, Perceive, Predict and Plan [84.07678019017644]
MP3は、入力が生のセンサーデータと高レベルのコマンドであるマップレス運転に対するエンドツーエンドのアプローチである。
提案手法は, より安全で, 快適であり, 長期クローズループシミュレーションにおいて, ベースラインよりもコマンドを追従できることを示す。
論文 参考訳(メタデータ) (2021-01-18T00:09:30Z) - HDNET: Exploiting HD Maps for 3D Object Detection [99.49035895393934]
高精細度(hd)マップは、現代の3dオブジェクト検出器の性能と頑健性を高める強力な事前情報を提供する。
我々はHDマップから幾何学的特徴と意味的特徴を抽出する単一ステージ検出器を設計する。
地図は至る所では利用できないため、生のLiDARデータからフライ時の地図を推定するマップ予測モジュールも提案する。
論文 参考訳(メタデータ) (2020-12-21T21:59:54Z) - OpenREALM: Real-time Mapping for Unmanned Aerial Vehicles [62.997667081978825]
OpenREALMは無人航空機(UAV)のリアルタイムマッピングフレームワークである
異なる操作モードにより、OpenREALMは近似平面場を仮定して単純な縫合を行うことができる。
すべてのモードにおいて、結果のマップの漸進的な進捗は、地上のオペレータによってライブで見ることができる。
論文 参考訳(メタデータ) (2020-09-22T12:28:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。