論文の概要: Large Language Models as Robust Data Generators in Software Analytics: Are We There Yet?
- arxiv url: http://arxiv.org/abs/2411.10565v2
- Date: Sun, 20 Apr 2025 16:35:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-22 17:11:52.623836
- Title: Large Language Models as Robust Data Generators in Software Analytics: Are We There Yet?
- Title(参考訳): ソフトウェア分析におけるロバストデータジェネレータとしての大規模言語モデル: まだ存在するか?
- Authors: Md. Abdul Awal, Mrigank Rochan, Chanchal K. Roy,
- Abstract要約: 敵攻撃は、ソフトウェアシステムの信頼性とセキュリティを損なう可能性がある。
LLM(Large Language Model)が生成したデータと人書きデータとがどのように比較されるかは明らかでない。
- 参考スコア(独自算出の注目度): 11.16693333878553
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Model (LLM)-generated data is increasingly used in software analytics, but it is unclear how this data compares to human-written data, particularly when models are exposed to adversarial scenarios. Adversarial attacks can compromise the reliability and security of software systems, so understanding how LLM-generated data performs under these conditions, compared to human-written data, which serves as the benchmark for model performance, can provide valuable insights into whether LLM-generated data offers similar robustness and effectiveness. To address this gap, we systematically evaluate and compare the quality of human-written and LLM-generated data for fine-tuning robust pre-trained models (PTMs) in the context of adversarial attacks. We evaluate the robustness of six widely used PTMs, fine-tuned on human-written and LLM-generated data, before and after adversarial attacks. This evaluation employs nine state-of-the-art (SOTA) adversarial attack techniques across three popular software analytics tasks: clone detection, code summarization, and sentiment analysis in code review discussions. Additionally, we analyze the quality of the generated adversarial examples using eleven similarity metrics. Our findings reveal that while PTMs fine-tuned on LLM-generated data perform competitively with those fine-tuned on human-written data, they exhibit less robustness against adversarial attacks in software analytics tasks. Our study underscores the need for further exploration into enhancing the quality of LLM-generated training data to develop models that are both high-performing and capable of withstanding adversarial attacks in software analytics.
- Abstract(参考訳): 大規模言語モデル(LLM)が生成するデータは、ソフトウェア分析においてますます利用されているが、このデータが人書きデータと比較されるか、特にモデルが敵対的なシナリオに晒されているかは明らかではない。
敵対的攻撃は、ソフトウェアシステムの信頼性とセキュリティを損なう可能性があるため、LLM生成データがこれらの条件下でどのように機能するかを理解することは、モデルパフォーマンスのベンチマークとして機能する人手によるデータと比較して、LLM生成データが同様の堅牢性と有効性を提供するかどうかについての貴重な洞察を与えることができる。
このギャップに対処するために、敵攻撃の文脈において、微調整された頑健な事前訓練モデル(PTM)に対して、人書きデータとLLM生成データの品質を体系的に評価し、比較した。
敵攻撃前後の人書きおよびLLM生成データに微調整を施した6種類の広帯域PTMのロバスト性を評価した。
この評価では、コードレビューの議論において、クローン検出、コードの要約、感情分析という3つの一般的なソフトウェア分析タスクに対して、9つの最先端(SOTA)攻撃手法が採用されている。
さらに、11の類似度指標を用いて、生成した逆例の品質を分析する。
以上の結果から,LPM生成データに微調整されたPTMは,人書きデータに微調整されたデータと競合するが,ソフトウェア解析タスクにおける敵攻撃に対する堅牢性は低いことがわかった。
本研究は、ソフトウェア分析において、高い性能と敵攻撃に耐えられるモデルを開発するために、LLM生成トレーニングデータの質を高めるためのさらなる調査の必要性を浮き彫りにしている。
関連論文リスト
- Learning from Reasoning Failures via Synthetic Data Generation [5.893928870271388]
本稿では,既存のLMMの推論失敗の分析に基づく合成データ生成手法を提案する。
553k以上のサンプルを含む大規模なマルチモーダル命令チューニングデータセットを生成する。
以上の結果から,我々の合成データに基づいてトレーニングしたモデルが,等価量の実データに基づいてトレーニングしたLMMの性能を上回ることが示唆された。
論文 参考訳(メタデータ) (2025-04-20T07:45:53Z) - Large Language Models for Market Research: A Data-augmentation Approach [3.3199591445531453]
大規模言語モデル(LLM)は、複雑な自然言語処理タスクに優れ、人工知能を変革した。
近年の研究では、LLMが生成するデータと人間のデータの間に大きなギャップが見られ、両者を置換する際にバイアスが発生している。
コンジョイント解析において,LLM生成データと実データとを効率的に統合する新しい統計データ拡張手法を提案する。
論文 参考訳(メタデータ) (2024-12-26T22:06:29Z) - Evaluating Language Models as Synthetic Data Generators [74.80905172696366]
AgoraBenchは、LMのデータ生成能力を評価するための標準化された設定とメトリクスを提供するベンチマークである。
6つのLMを使って126万のトレーニングインスタンスを合成し、99の学生モデルをトレーニングすることで、LMのデータ生成能力に関する重要な洞察を明らかにする。
論文 参考訳(メタデータ) (2024-12-04T19:20:32Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
本稿では,データセット間のデータ品質向上を自動化する新しいStar-Agentsフレームワークを提案する。
このフレームワークは最初,複数のLDMエージェントを用いた多様なインストラクションデータを生成する。
生成したデータは、難易度と品質の両方を評価する二重モデル法を用いて厳密な評価を行う。
論文 参考訳(メタデータ) (2024-11-21T02:30:53Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Data Advisor: Dynamic Data Curation for Safety Alignment of Large Language Models [79.65071553905021]
所望のデータセットの特徴を考慮したデータ生成手法であるデータアドバイザを提案する。
Data Advisorは生成されたデータの状態を監視し、現在のデータセットの弱点を特定し、データ生成の次のイテレーションをアドバイスする。
論文 参考訳(メタデータ) (2024-10-07T17:59:58Z) - Quality Matters: Evaluating Synthetic Data for Tool-Using LLMs [11.24476329991465]
外部ツール使用のための大規模言語モデル(LLM)のトレーニングは、急速に拡大する分野である。
体系的なデータ品質チェックの欠如は、モデルを適切にトレーニングし、テストするための複雑さを引き起こす。
外部ツールを用いたLCMのトレーニングにおいて,データの信頼性を評価するための2つの手法を提案する。
論文 参考訳(メタデータ) (2024-09-24T17:20:02Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation [17.69409515806874]
脆弱性修正コミットのデータセット上での微調整済みのLLMがセキュアなコード生成を促進するかどうかを探索研究する。
オープンソースのリポジトリから、確認済みの脆弱性のコード修正を収集することで、セキュアなコード生成のための微調整データセットをクロールしました。
我々の調査によると、微調整のLLMは、C言語で6.4%、C++言語で5.4%、セキュアなコード生成を改善することができる。
論文 参考訳(メタデータ) (2024-08-17T02:51:27Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - Can We Trust Large Language Models Generated Code? A Framework for In-Context Learning, Security Patterns, and Code Evaluations Across Diverse LLMs [2.7138982369416866]
大規模言語モデル(LLM)は、ソフトウェア工学における自動コード生成に革命をもたらした。
しかし、生成されたコードのセキュリティと品質に関する懸念が持ち上がっている。
本研究は,LLMの行動学習をセキュアにするための枠組みを導入することで,これらの課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-06-18T11:29:34Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Uncovering LLM-Generated Code: A Zero-Shot Synthetic Code Detector via Code Rewriting [78.48355455324688]
そこで本研究では,コードと書き直された変種との類似性に基づいて,ゼロショット合成符号検出器を提案する。
以上の結果から,既存のテキスト用合成コンテンツ検出装置よりも顕著な向上が見られた。
論文 参考訳(メタデータ) (2024-05-25T08:57:28Z) - How Far Have We Gone in Binary Code Understanding Using Large Language Models [51.527805834378974]
バイナリコード理解におけるLarge Language Models(LLM)の有効性を評価するためのベンチマークを提案する。
評価の結果、既存のLLMはバイナリコードをある程度理解でき、それによってバイナリコード解析の効率が向上することが明らかとなった。
論文 参考訳(メタデータ) (2024-04-15T14:44:08Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - Assured LLM-Based Software Engineering [51.003878077888686]
この記事では,2024年4月15日にポルトガルのリスボンで開催された International Workshop on Interpretability, Robustness, and Benchmarking in Neural Software Engineering で,Mark Harman 氏による基調講演の内容の概要を紹介する。
論文 参考訳(メタデータ) (2024-02-06T20:38:46Z) - Ocassionally Secure: A Comparative Analysis of Code Generation
Assistants [8.573156248244695]
本稿では,LLMを効果的かつ安全に展開できる状況と状況を特定し,理解することに焦点を当てる。
Google の ChatGPT と Bard と Gemini を用いた 4 つの高度な LLM--GPT-3.5 と GPT-4 の比較分析を行い,各モデルのコード生成能力を評価した。
61のコードアウトプットを収集し、機能、セキュリティ、パフォーマンス、複雑さ、信頼性など、さまざまな側面で分析しました。
論文 参考訳(メタデータ) (2024-02-01T15:49:47Z) - SALLM: Security Assessment of Generated Code [0.5137309756089941]
本稿では,セキュアなコードを体系的に生成する大規模言語モデルの能力をベンチマークするフレームワークであるSALLMについて述べる。
フレームワークには3つの主要なコンポーネントがある。セキュリティ中心のPythonプロンプトの新たなデータセット、生成されたコードを評価するための評価テクニック、セキュアなコード生成の観点からモデルのパフォーマンスを評価するための新しいメトリクスである。
論文 参考訳(メタデータ) (2023-11-01T22:46:31Z) - Do Large Language Models Pay Similar Attention Like Human Programmers When Generating Code? [10.249771123421432]
我々は,Large Language Models (LLMs) が,コード生成中に人間のプログラマと同じタスク記述に係わるかどうかを検討する。
手動で211の間違ったコードスニペットを分析し、多くのコード生成エラーを説明するのに使える5つの注意パターンを見つけました。
この結果から,人間によるLLMの理解性向上とプログラマの信頼度向上の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2023-06-02T00:57:03Z) - Utility Assessment of Synthetic Data Generation Methods [0.0]
完全合成データを生成する方法が,その実用性に相違があるかどうかを考察する。
ボード上の他の方法よりもパフォーマンスがよい方法がいくつかあります。
機械学習モデルのトレーニングに合成データを使用する場合、分類タスクに対して有望な結果が得られる。
論文 参考訳(メタデータ) (2022-11-23T11:09:52Z) - Exploring the Efficacy of Automatically Generated Counterfactuals for
Sentiment Analysis [17.811597734603144]
本稿では,データ拡張と説明のためのデファクトデータの自動生成手法を提案する。
いくつかの異なるデータセットに対する包括的な評価と、さまざまな最先端ベンチマークの使用により、我々のアプローチがモデルパフォーマンスを大幅に改善できることを示す。
論文 参考訳(メタデータ) (2021-06-29T10:27:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。