論文の概要: Structured Dialogue System for Mental Health: An LLM Chatbot Leveraging the PM+ Guidelines
- arxiv url: http://arxiv.org/abs/2411.10681v1
- Date: Sat, 16 Nov 2024 03:12:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:02.133423
- Title: Structured Dialogue System for Mental Health: An LLM Chatbot Leveraging the PM+ Guidelines
- Title(参考訳): メンタルヘルスのための構造化対話システム:PM+ガイドラインを活用したLLMチャットボット
- Authors: Yixiang Chen, Xinyu Zhang, Jinran Wang, Xurong Xie, Nan Yan, Hui Chen, Lan Wang,
- Abstract要約: SuDoSysは、心理学的カウンセリングを提供するために設計された、ステージ対応マルチターン対話システムである。
このシステムはカウンセリングプロセスを通じて重要な情報を格納し、コヒーレントで指示された会話を確実にする。
客観的評価と主観評価の両方を用いて評価すると、SuDoSysは論理的に一貫性のある応答を生成する効果を示す。
- 参考スコア(独自算出の注目度): 23.230484270460877
- License:
- Abstract: The Structured Dialogue System, referred to as SuDoSys, is an innovative Large Language Model (LLM)-based chatbot designed to provide psychological counseling. SuDoSys leverages the World Health Organization (WHO)'s Problem Management Plus (PM+) guidelines to deliver stage-aware multi-turn dialogues. Existing methods for employing an LLM in multi-turn psychological counseling typically involve direct fine-tuning using generated dialogues, often neglecting the dynamic stage shifts of counseling sessions. Unlike previous approaches, SuDoSys considers the different stages of counseling and stores essential information throughout the counseling process, ensuring coherent and directed conversations. The system employs an LLM, a stage-aware instruction generator, a response unpacker, a topic database, and a stage controller to maintain dialogue flow. In addition, we propose a novel technique that simulates counseling clients to interact with the evaluated system and evaluate its performance automatically. When assessed using both objective and subjective evaluations, SuDoSys demonstrates its effectiveness in generating logically coherent responses. The system's code and program scripts for evaluation are open-sourced.
- Abstract(参考訳): 構造化対話システム(Structured Dialogue System, SuDoSys)は、心理学的カウンセリングを提供するために設計された、LLM(Large Language Model)ベースの革新的なチャットボットである。
SuDoSysは、World Health Organization(WHO)のIssue Management Plus(PM+)ガイドラインを活用して、ステージ対応のマルチターンダイアログを提供する。
LLMを多ターン心理カウンセリングに利用する既存の方法は、しばしばカウンセリングセッションの動的ステージシフトを無視し、生成された対話を用いて直接微調整を行う。
従来のアプローチとは異なり、SuDoSysはカウンセリングの異なる段階について検討し、カウンセリングプロセスを通じて重要な情報を保存し、一貫性のある会話を確実にする。
このシステムは、LLM、ステージ認識命令生成装置、応答アンパ、トピックデータベース、および対話フローを維持するためのステージコントローラを使用する。
さらに,カウンセリングクライアントをシミュレートして評価システムと対話し,その性能を自動評価する手法を提案する。
客観的評価と主観評価の両方を用いて評価すると、SuDoSysは論理的に一貫性のある応答を生成する効果を示す。
システムのコードと評価のためのプログラムスクリプトはオープンソースである。
関連論文リスト
- Interactive Agents: Simulating Counselor-Client Psychological Counseling via Role-Playing LLM-to-LLM Interactions [12.455050661682051]
本稿では,カウンセラーとクライアントの相互作用をシミュレートするためのロールプレイングを通じて,2つの大きな言語モデル(LLM)を利用するフレームワークを提案する。
我々のフレームワークは2つのLCMで構成され、1つは特定の実生活のユーザープロファイルを備えたクライアントとして機能し、もう1つは経験豊富なカウンセラーとして機能する。
論文 参考訳(メタデータ) (2024-08-28T13:29:59Z) - Data Augmentation of Multi-turn Psychological Dialogue via Knowledge-driven Progressive Thought Prompting [46.919537239016734]
大規模言語モデル(LLM)はマルチターン対話の実装を単純化した。
心理的対話のような低リソース領域で満足なパフォーマンスを実現することは依然として困難です。
心理学的対話を生成するための LLM 指導のための知識駆動型進歩的思考促進手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T12:02:56Z) - CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling [27.193022503592342]
中国における心理カウンセリングのための多面的対話再構築・評価フレームワークCPsyCounを提案する。
心理カウンセリングレポートを完全に活用するために、高品質な対話を構築するための2段階のアプローチが考案された。
マルチターン心理相談の効果的な自動評価のための総合評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-05-26T05:18:00Z) - Plug-and-Play Policy Planner for Large Language Model Powered Dialogue
Agents [121.46051697742608]
そこで本稿では,PDPPという言語モデルプラグインを用いて対話問題を整理するための新たな対話ポリシー計画パラダイムを提案する。
具体的には、利用可能な人間の注釈付きデータに対する教師付き微調整を容易にするための新しいトレーニングフレームワークを開発する。
PPDPPは3つの異なるプロアクティブな対話アプリケーションにおいて、既存のアプローチを一貫して、実質的に上回っている。
論文 参考訳(メタデータ) (2023-11-01T03:20:16Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration [72.04629217161656]
本研究は, 明瞭化, 目標誘導, 非協調対話の3つの側面に焦点をあてる。
LLMの能動性を高めるために,プロアクティブ・チェーン・オブ・ソート・プロンプト方式を提案する。
論文 参考訳(メタデータ) (2023-05-23T02:49:35Z) - Response-act Guided Reinforced Dialogue Generation for Mental Health
Counseling [25.524804770124145]
本稿では、メンタルヘルスカウンセリング会話のための対話行動誘導応答生成器READERについて述べる。
READERは変換器上に構築されており、次の発話に対する潜在的な対話行為d(t+1)を共同で予測し、適切な応答u(t+1)を生成する。
ベンチマークカウンセリング会話データセットであるHOPE上でREADERを評価する。
論文 参考訳(メタデータ) (2023-01-30T08:53:35Z) - Speaker and Time-aware Joint Contextual Learning for Dialogue-act
Classification in Counselling Conversations [15.230185998553159]
我々は、カウンセリング会話における対話行動分類のためのプラットフォームを提供するために、HOPEと呼ばれる新しいデータセットを開発した。
私たちは、YouTubeで公開されているカウンセリングセッションビデオから12.9Kの発話を収集し、それらの転写文を抽出し、DACラベルで注釈付けします。
対話行動分類のための新しい話者認識型・時間認識型文脈学習システムであるSPARTAを提案する。
論文 参考訳(メタデータ) (2021-11-12T10:30:30Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
自然言語を理解し、人間と対話するための訓練機械は、人工知能の解明と本質的なタスクである。
本稿では,対話理解タスクにおける対話モデリングの技術的視点から,過去の手法を概観する。
さらに,対話シナリオにおけるPrLMの強化に使用される対話関連事前学習手法を分類する。
論文 参考訳(メタデータ) (2021-10-11T03:52:37Z) - Distributed Structured Actor-Critic Reinforcement Learning for Universal
Dialogue Management [29.57382819573169]
我々は,ユーザに対応する対話行動を選択するポリシーの策定に重点を置いている。
逐次的なシステム決定プロセスは、部分的に観察可能なマルコフ決定プロセスに抽象化することができる。
過去数年間、ニューラルネットワーク(NN)を関数近似器として利用するディープ強化学習(DRL)アルゴリズムが数多く存在する。
論文 参考訳(メタデータ) (2020-09-22T05:39:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。