GeomCLIP: Contrastive Geometry-Text Pre-training for Molecules
- URL: http://arxiv.org/abs/2411.10821v1
- Date: Sat, 16 Nov 2024 15:15:24 GMT
- Title: GeomCLIP: Contrastive Geometry-Text Pre-training for Molecules
- Authors: Teng Xiao, Chao Cui, Huaisheng Zhu, Vasant G. Honavar,
- Abstract summary: We set up a data collection effort for 200K pairs of ground-state geometric structures and biomedical texts.
We propose the GeomCLIP framework to enhance for multi-modal representation learning from molecular structures and biomedical text.
- Score: 16.98169256565552
- License:
- Abstract: Pretraining molecular representations is crucial for drug and material discovery. Recent methods focus on learning representations from geometric structures, effectively capturing 3D position information. Yet, they overlook the rich information in biomedical texts, which detail molecules' properties and substructures. With this in mind, we set up a data collection effort for 200K pairs of ground-state geometric structures and biomedical texts, resulting in a PubChem3D dataset. Based on this dataset, we propose the GeomCLIP framework to enhance for multi-modal representation learning from molecular structures and biomedical text. During pre-training, we design two types of tasks, i.e., multimodal representation alignment and unimodal denoising pretraining, to align the 3D geometric encoder with textual information and, at the same time, preserve its original representation power. Experimental results show the effectiveness of GeomCLIP in various tasks such as molecular property prediction, zero-shot text-molecule retrieval, and 3D molecule captioning. Our code and collected dataset are available at \url{https://github.com/xiaocui3737/GeomCLIP}
Related papers
- Self Pre-training with Topology- and Spatiality-aware Masked Autoencoders for 3D Medical Image Segmentation [16.753957522664713]
Masked Autoencoders (MAEs) have been shown to be effective in pre-training Vision Transformers (ViTs) for natural and medical image analysis problems.
Existing MAE pre-training methods, which were specifically developed with the ViT architecture, lack the ability to capture geometric shape and spatial information.
We propose a novel extension of known MAEs for self pre-training (i.e., models pre-trained on the same target dataset) for 3D medical image segmentation.
arXiv Detail & Related papers (2024-06-15T06:15:17Z) - Atomas: Hierarchical Alignment on Molecule-Text for Unified Molecule Understanding and Generation [42.08917809689811]
We propose Atomas, a multi-modal molecular representation learning framework to jointly learn representations from SMILES string and text.
In the retrieval task, Atomas exhibits robust generalization ability and outperforms the baseline by 30.8% of recall@1 on average.
In the generation task, Atomas achieves state-of-the-art results in both molecule captioning task and molecule generation task.
arXiv Detail & Related papers (2024-04-23T12:35:44Z) - Leveraging Biomolecule and Natural Language through Multi-Modal
Learning: A Survey [75.47055414002571]
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology.
We provide an analysis of recent advancements achieved through cross modeling of biomolecules and natural language.
arXiv Detail & Related papers (2024-03-03T14:59:47Z) - Integrating curation into scientific publishing to train AI models [1.6982459897303823]
We have embedded multimodal data curation into the academic publishing process to annotate segmented figure panels and captions.
The dataset, SourceData-NLP, contains more than 620,000 annotated biomedical entities.
We evaluate the utility of the dataset to train AI models using named-entity recognition, segmentation of figure captions into their constituent panels, and a novel context-dependent semantic task.
arXiv Detail & Related papers (2023-10-31T13:22:38Z) - Hierarchical Grammar-Induced Geometry for Data-Efficient Molecular
Property Prediction [37.443491843178315]
We propose a data-efficient property predictor by utilizing a learnable hierarchical molecular grammar.
The property prediction is performed using graph neural diffusion over the grammar-induced geometry.
We include a detailed ablation study and further analysis of our solution, showing its effectiveness in cases with extremely limited data.
arXiv Detail & Related papers (2023-09-04T19:59:51Z) - Geometry-aware Line Graph Transformer Pre-training for Molecular
Property Prediction [4.598522704308923]
Geometry-aware line graph transformer (Galformer) pre-training is a novel self-supervised learning framework.
Galformer consistently outperforms all baselines on both classification and regression tasks.
arXiv Detail & Related papers (2023-09-01T14:20:48Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
We introduce MolGrapher to recognize chemical structures visually.
We treat all candidate atoms and bonds as nodes and put them in a graph.
We classify atom and bond nodes in the graph with a Graph Neural Network.
arXiv Detail & Related papers (2023-08-23T16:16:11Z) - Automated 3D Pre-Training for Molecular Property Prediction [54.15788181794094]
We propose a novel 3D pre-training framework (dubbed 3D PGT)
It pre-trains a model on 3D molecular graphs, and then fine-tunes it on molecular graphs without 3D structures.
Extensive experiments on 2D molecular graphs are conducted to demonstrate the accuracy, efficiency and generalization ability of the proposed 3D PGT.
arXiv Detail & Related papers (2023-06-13T14:43:13Z) - 3D Molecular Geometry Analysis with 2D Graphs [79.47097907673877]
Ground-state 3D geometries of molecules are essential for many molecular analysis tasks.
Modern quantum mechanical methods can compute accurate 3D geometries but are computationally prohibitive.
We propose a novel deep learning framework to predict 3D geometries from molecular graphs.
arXiv Detail & Related papers (2023-05-01T19:00:46Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - ATOM3D: Tasks On Molecules in Three Dimensions [91.72138447636769]
Deep neural networks have recently gained significant attention.
In this work we present ATOM3D, a collection of both novel and existing datasets spanning several key classes of biomolecules.
We develop three-dimensional molecular learning networks for each of these tasks, finding that they consistently improve performance.
arXiv Detail & Related papers (2020-12-07T20:18:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.