Atomas: Hierarchical Alignment on Molecule-Text for Unified Molecule Understanding and Generation
- URL: http://arxiv.org/abs/2404.16880v1
- Date: Tue, 23 Apr 2024 12:35:44 GMT
- Title: Atomas: Hierarchical Alignment on Molecule-Text for Unified Molecule Understanding and Generation
- Authors: Yikun Zhang, Geyan Ye, Chaohao Yuan, Bo Han, Long-Kai Huang, Jianhua Yao, Wei Liu, Yu Rong,
- Abstract summary: We propose Atomas, a multi-modal molecular representation learning framework to jointly learn representations from SMILES string and text.
In the retrieval task, Atomas exhibits robust generalization ability and outperforms the baseline by 30.8% of recall@1 on average.
In the generation task, Atomas achieves state-of-the-art results in both molecule captioning task and molecule generation task.
- Score: 42.08917809689811
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecule-and-text cross-modal representation learning has emerged as a promising direction for enhancing the quality of molecular representation, thereby improving performance in various scientific fields, including drug discovery and materials science. Existing studies adopt a global alignment approach to learn the knowledge from different modalities. These global alignment approaches fail to capture fine-grained information, such as molecular fragments and their corresponding textual description, which is crucial for downstream tasks. Furthermore, it is incapable to model such information using a similar global alignment strategy due to data scarcity of paired local part annotated data from existing datasets. In this paper, we propose Atomas, a multi-modal molecular representation learning framework to jointly learn representations from SMILES string and text. We design a Hierarchical Adaptive Alignment model to concurrently learn the fine-grained fragment correspondence between two modalities and align these representations of fragments in three levels. Additionally, Atomas's end-to-end training framework incorporates the tasks of understanding and generating molecule, thereby supporting a wider range of downstream tasks. In the retrieval task, Atomas exhibits robust generalization ability and outperforms the baseline by 30.8% of recall@1 on average. In the generation task, Atomas achieves state-of-the-art results in both molecule captioning task and molecule generation task. Moreover, the visualization of the Hierarchical Adaptive Alignment model further confirms the chemical significance of our approach. Our codes can be found at https://anonymous.4open.science/r/Atomas-03C3.
Related papers
- Graph-based Molecular In-context Learning Grounded on Morgan Fingerprints [28.262593876388397]
In-context learning (ICL) conditions large language models (LLMs) for molecular tasks, such as property prediction and molecule captioning, by embedding carefully selected demonstration examples into the input prompt.
However, current prompt retrieval methods for molecular tasks have relied on molecule feature similarity, such as Morgan fingerprints, which do not adequately capture the global molecular and atom-binding relationships.
We propose a self-supervised learning technique, GAMIC, which aligns global molecular structures, represented by graph neural networks (GNNs), with textual captions (descriptions) while leveraging local feature similarity through Morgan fingerprints.
arXiv Detail & Related papers (2025-02-08T02:46:33Z) - GeomCLIP: Contrastive Geometry-Text Pre-training for Molecules [16.98169256565552]
We set up a data collection effort for 200K pairs of ground-state geometric structures and biomedical texts.
We propose the GeomCLIP framework to enhance for multi-modal representation learning from molecular structures and biomedical text.
arXiv Detail & Related papers (2024-11-16T15:15:24Z) - Exploring Optimal Transport-Based Multi-Grained Alignments for Text-Molecule Retrieval [24.061535843472427]
We introduce the Optimal TRansport-based Multi-grained Alignments model (ORMA)
ORMA is a novel approach that facilitates multi-grained alignments between textual descriptions and molecules.
Experimental results on the ChEBI-20 and PCdes datasets demonstrate that ORMA significantly outperforms existing state-of-the-art (SOTA) models.
arXiv Detail & Related papers (2024-11-04T06:30:52Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
We propose a unified model UniIF for inverse folding of all molecules.
Our proposed method surpasses state-of-the-art methods on all tasks.
arXiv Detail & Related papers (2024-05-29T10:26:16Z) - Unified Molecular Modeling via Modality Blending [35.16755562674055]
We introduce a novel "blend-then-predict" self-supervised learning method (MoleBLEND)
MoleBLEND blends atom relations from different modalities into one unified relation for matrix encoding, then recovers modality-specific information for both 2D and 3D structures.
Experiments show that MoleBLEND achieves state-of-the-art performance across major 2D/3D benchmarks.
arXiv Detail & Related papers (2023-07-12T15:27:06Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.
Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.
By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Generation of 3D Molecules in Pockets via Language Model [0.0]
Generative models for molecules based on sequential line notation (e.g. SMILES) or graph representation have attracted an increasing interest in the field of structure-based drug design.
We introduce Lingo3DMol, a pocket-based 3D molecule generation method that combines language models and geometric deep learning technology.
arXiv Detail & Related papers (2023-05-17T11:31:06Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
We propose a novel framework called Active Semi-supervised Graph Neural Network (ASGN) by incorporating both labeled and unlabeled molecules.
In the teacher model, we propose a novel semi-supervised learning method to learn general representation that jointly exploits information from molecular structure and molecular distribution.
At last, we proposed a novel active learning strategy in terms of molecular diversities to select informative data during the whole framework learning.
arXiv Detail & Related papers (2020-07-07T04:22:39Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.