論文の概要: Framework for developing and evaluating ethical collaboration between expert and machine
- arxiv url: http://arxiv.org/abs/2411.10983v1
- Date: Sun, 17 Nov 2024 06:49:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:33:16.948572
- Title: Framework for developing and evaluating ethical collaboration between expert and machine
- Title(参考訳): 専門家と機械の倫理的協力を育成・評価するための枠組み
- Authors: Ayan Banerjee, Payal Kamboj, Sandeep Gupta,
- Abstract要約: 精密医療は、アクセス可能な疾患診断とパーソナライズされた介入計画のための有望なアプローチである。
人工知能(AI)を活用することで、精密医療は個々の患者に対する診断と治療ソリューションを調整する。
しかし、医療応用におけるAIの採用は重大な課題に直面している。
本稿では,専門家誘導型マルチモーダルAIの開発と倫理的評価を行う枠組みを提案する。
- 参考スコア(独自算出の注目度): 4.304304889487245
- License:
- Abstract: Precision medicine is a promising approach for accessible disease diagnosis and personalized intervention planning in high-mortality diseases such as coronary artery disease (CAD), drug-resistant epilepsy (DRE), and chronic illnesses like Type 1 diabetes (T1D). By leveraging artificial intelligence (AI), precision medicine tailors diagnosis and treatment solutions to individual patients by explicitly modeling variance in pathophysiology. However, the adoption of AI in medical applications faces significant challenges, including poor generalizability across centers, demographics, and comorbidities, limited explainability in clinical terms, and a lack of trust in ethical decision-making. This paper proposes a framework to develop and ethically evaluate expert-guided multi-modal AI, addressing these challenges in AI integration within precision medicine. We illustrate this framework with case study on insulin management for T1D. To ensure ethical considerations and clinician engagement, we adopt a co-design approach where AI serves an assistive role, with final diagnoses or treatment plans emerging from collaboration between clinicians and AI.
- Abstract(参考訳): 精密医療は、冠動脈疾患(CAD)、薬剤耐性てんかん(DRE)、および1型糖尿病(T1D)のような慢性疾患などの高死亡率疾患に対する、アクセス可能な疾患診断とパーソナライズされた介入計画のための有望なアプローチである。
人工知能(AI)を活用することで、精密医療は、病態生理学のばらつきを明示的にモデル化することによって、個々の患者に対する診断と治療ソリューションを調整する。
しかし、医療応用におけるAIの採用は、センター、人口統計学、共同研究、臨床用語による説明可能性の制限、倫理的意思決定への信頼の欠如など、重大な課題に直面している。
本稿では、専門家が指導するマルチモーダルAIを開発し倫理的に評価する枠組みを提案し、精密医療におけるAI統合におけるこれらの課題に対処する。
本枠組みをT1Dのインスリン管理のケーススタディで説明する。
倫理的考察と臨床医の関与を確保するため、我々はAIが補助的役割を果たす共同設計アプローチを採用し、臨床医とAIの連携から最終診断や治療計画が生まれる。
関連論文リスト
- Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
本研究は,人工知能(AI)モデルを用いた医用合成データ生成の臨床評価に焦点を当てた。
本論文は,a) 医用専門家による合成画像の体系的評価のためのプロトコルを提示し,b) 高分解能WCE画像合成のための新しい変分オートエンコーダモデルであるTIDE-IIを評価する。
その結果、TIDE-IIは臨床的に関連性のあるWCE画像を生成し、データの不足に対処し、診断ツールの強化に役立つことがわかった。
論文 参考訳(メタデータ) (2024-10-31T19:48:50Z) - Artificial intelligence techniques in inherited retinal diseases: A review [19.107474958408847]
遺伝性網膜疾患(英: InheritedRetinal disease、IRD)は、進行性視力低下を引き起こす多様な遺伝性疾患群であり、労働年齢層の視覚障害の主要な原因である。
人工知能(AI)の最近の進歩は、これらの課題に対する有望な解決策を提供する。
このレビューは既存の研究を統合し、ギャップを特定し、IRDの診断と管理におけるAIの可能性の概要を提供する。
論文 参考訳(メタデータ) (2024-10-10T03:14:51Z) - The Role of Explainable AI in Revolutionizing Human Health Monitoring [0.0]
説明可能なAI(XAI)は、より明確で、患者のケアを大幅に改善する可能性がある。
本稿では,パーキンソン病,脳卒中,うつ病,癌,心臓病,アルツハイマー病などの慢性疾患について概説する。
この論文は、ヒトの健康モニタリングにおけるXAIの課題と今後の研究機会を批判的に評価することで締めくくられる。
論文 参考訳(メタデータ) (2024-09-11T15:31:40Z) - Establishing Rigorous and Cost-effective Clinical Trials for Artificial Intelligence Models [18.240773244542474]
人工知能(AI)と医学における臨床実践の間には大きなギャップが残っている。
最先端および最先端のAIモデル評価は、医療データセットの研究室研究や、患者中心または患者中心のコントロールを持たない直接臨床試験に限られる。
臨床実習におけるAIモデルの厳格かつ費用対効果評価手法の重要性を初めて強調する。
論文 参考訳(メタデータ) (2024-07-11T14:37:08Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Enabling Collaborative Clinical Diagnosis of Infectious Keratitis by
Integrating Expert Knowledge and Interpretable Data-driven Intelligence [28.144658552047975]
感染性角膜炎(IK)の診断における知識誘導診断モデル(KGDM)の性能,解釈可能性,臨床的有用性について検討した。
AIベースのバイオマーカーの診断確率比(DOR)は3.011から35.233の範囲で有効である。
コラボレーションの参加者は、人間とAIの両方を上回るパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-01-14T02:10:54Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
本稿では,早期診断とタイムリー診断のための基礎的枠組みを提案する。
診断過程を概説する決定論的アプローチに基づいている。
機械学習と統計手法を統合し、最適なパーソナライズされた診断経路を推定する。
論文 参考訳(メタデータ) (2023-11-26T14:42:31Z) - Explainable AI in Orthopedics: Challenges, Opportunities, and Prospects [0.5277024349608834]
この研究は、XAIを整形外科に採用するための標準とガイドラインを確立するために、AI実践者、整形外科専門家、および規制機関間の学際的なコラボレーションの必要性を強調している。
論文 参考訳(メタデータ) (2023-08-09T04:15:10Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
臨床診断は、臨床ノートに基づいて患者に診断符号を割り当てることを目的としており、臨床意思決定において重要な役割を担っている。
本稿では,臨床自動診断のための継承誘導階層と共起グラフの伝播を組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-01-27T13:16:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。