論文の概要: Cross-Patient Pseudo Bags Generation and Curriculum Contrastive Learning for Imbalanced Multiclassification of Whole Slide Image
- arxiv url: http://arxiv.org/abs/2411.11262v1
- Date: Mon, 18 Nov 2024 03:35:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:35:20.294990
- Title: Cross-Patient Pseudo Bags Generation and Curriculum Contrastive Learning for Imbalanced Multiclassification of Whole Slide Image
- Title(参考訳): 全スライド画像の不均衡化のための相互パタント擬似バグ生成とカリキュラムコントラスト学習
- Authors: Yonghuang Wu, Xuan Xie, Xinyuan Niu, Chengqian Zhao, Jinhua Yu,
- Abstract要約: 本稿では,従来のWSIに類似した特徴分布を持つサブバッグを生成することによって,詳細な情報を学習することを提案する。
疑似バグ生成アルゴリズムを用いて、WSIの豊富な冗長な情報をさらに活用する。
従来のアプローチとは異なり,我々のフレームワークは,バッグレベルの表現の学習から,マルチインスタンスバッグの特徴分布の理解と活用へと移行している。
- 参考スコア(独自算出の注目度): 5.3961058952354275
- License:
- Abstract: Pathology computing has dramatically improved pathologists' workflow and diagnostic decision-making processes. Although computer-aided diagnostic systems have shown considerable value in whole slide image (WSI) analysis, the problem of multi-classification under sample imbalance remains an intractable challenge. To address this, we propose learning fine-grained information by generating sub-bags with feature distributions similar to the original WSIs. Additionally, we utilize a pseudo-bag generation algorithm to further leverage the abundant and redundant information in WSIs, allowing efficient training in unbalanced-sample multi-classification tasks. Furthermore, we introduce an affinity-based sample selection and curriculum contrastive learning strategy to enhance the stability of model representation learning. Unlike previous approaches, our framework transitions from learning bag-level representations to understanding and exploiting the feature distribution of multi-instance bags. Our method demonstrates significant performance improvements on three datasets, including tumor classification and lymph node metastasis. On average, it achieves a 4.39-point improvement in F1 score compared to the second-best method across the three tasks, underscoring its superior performance.
- Abstract(参考訳): 病理コンピューティングは、病理学者のワークフローと診断決定プロセスを大幅に改善した。
コンピュータ支援型診断システムは, スライド画像全体(WSI)解析において有意な価値を示しているが, サンプル不均衡下での多重分類の問題は, 難解な課題である。
そこで本稿では,WSI に類似した特徴分布を持つサブバッグを生成することによって,より詳細な情報を学習する手法を提案する。
さらに、疑似バグ生成アルゴリズムを用いて、WSIの豊富な冗長な情報をさらに活用し、アンバランスなサンプルマルチクラス化タスクにおける効率的なトレーニングを可能にする。
さらに、モデル表現学習の安定性を高めるために、親和性に基づくサンプル選択とカリキュラムのコントラスト学習戦略を導入する。
従来のアプローチとは異なり,我々のフレームワークは,バッグレベルの表現の学習から,マルチインスタンスバッグの特徴分布の理解と活用へと移行している。
本手法は腫瘍分類とリンパ節転移を含む3つのデータセットに対して有意な性能改善を示す。
平均してF1スコアの4.39ポイント向上を達成し、3つのタスクにまたがる第2のベストメソッドと比較して、優れたパフォーマンスを誇示している。
関連論文リスト
- Boosting Few-Shot Learning with Disentangled Self-Supervised Learning and Meta-Learning for Medical Image Classification [8.975676404678374]
低データ体制下で訓練されたモデルの性能と一般化能力を改善するための戦略を提案する。
提案手法は、自己教師付き学習環境において学習した特徴をアンタングル化して、下流タスクの表現の堅牢性を向上する事前学習段階から開始する。
次に、メタファインニングのステップを導入し、メタトレーニングとメタテストフェーズの関連クラスを活用するが、レベルは変化する。
論文 参考訳(メタデータ) (2024-03-26T09:36:20Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
医用画像の構造を分割するマルチスケールクロススーパービジョンコントラスト学習フレームワークを開発した。
提案手法は,頑健な特徴表現を抽出するために,地上構造と横断予測ラベルに基づくマルチスケール特徴と対比する。
Diceでは最先端の半教師あり手法を3.0%以上上回っている。
論文 参考訳(メタデータ) (2023-06-25T16:55:32Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
本研究では,2層非線形畳み込みニューラルネットワークの学習過程について検討した。
分析の結果,不均衡なデータ群と学習容易なスプリアス特徴が学習過程におけるスプリアス特徴の優位性に繋がる可能性が示唆された。
本稿では,PDEと呼ばれる新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-08T05:44:06Z) - Retinal Vessel Segmentation via a Multi-resolution Contextual Network
and Adversarial Learning [4.776465250559035]
本稿では,意味的に異なる特徴間のコンテキスト依存を学習するためのマルチレゾリューション・コンテクスト・ネットワーク(MRC-Net)を提案する。
本手法は,DRIVE,STARE,CHASEの3つのベンチマークデータセットを用いて評価を行った。
論文 参考訳(メタデータ) (2023-04-25T14:27:34Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - On Modality Bias Recognition and Reduction [70.69194431713825]
マルチモーダル分類の文脈におけるモダリティバイアス問題について検討する。
本稿では,各ラベルの特徴空間を適応的に学習するプラグアンドプレイ損失関数法を提案する。
本手法は, ベースラインに比べ, 顕著な性能向上を実現している。
論文 参考訳(メタデータ) (2022-02-25T13:47:09Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Ensemble of CNN classifiers using Sugeno Fuzzy Integral Technique for
Cervical Cytology Image Classification [1.6986898305640261]
頸がんの単細胞画像とスライド画像の分類を完全自動化するコンピュータ支援診断ツールを提案する。
我々は、Sugeno Fuzzy Integralを使用して、Inception v3、DenseNet-161、ResNet-34という3つの人気のあるディープラーニングモデルの意思決定スコアをアンサンブルする。
論文 参考訳(メタデータ) (2021-08-21T08:41:41Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。