論文の概要: Extended Neural Contractive Dynamical Systems: On Multiple Tasks and Riemannian Safety Regions
- arxiv url: http://arxiv.org/abs/2411.11405v1
- Date: Mon, 18 Nov 2024 09:27:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:26:27.298820
- Title: Extended Neural Contractive Dynamical Systems: On Multiple Tasks and Riemannian Safety Regions
- Title(参考訳): 拡張ニューラル収縮力学系:多重タスクとリーマン安全領域について
- Authors: Hadi Beik Mohammadi, Søren Hauberg, Georgios Arvanitidis, Gerhard Neumann, Leonel Rozo,
- Abstract要約: 我々は最近、安定性を保証するニューラルネットワークアーキテクチャであるNCDS(Neural Contractive Dynamical Systems)を提案した。
本稿では、より慎重な正規化、複数のタスクを扱うフレームワークの条件変種、遅延障害回避に対する不確実性駆動アプローチによりフレームワークを拡張した。
実験では、開発システムは、自律ロボット工学に必要な安定性を確保しながら、通常のニューラルネットワークの柔軟性があることを検証する。
- 参考スコア(独自算出の注目度): 22.80115774627255
- License:
- Abstract: Stability guarantees are crucial when ensuring that a fully autonomous robot does not take undesirable or potentially harmful actions. We recently proposed the Neural Contractive Dynamical Systems (NCDS), which is a neural network architecture that guarantees contractive stability. With this, learning-from-demonstrations approaches can trivially provide stability guarantees. However, our early work left several unanswered questions, which we here address. Beyond providing an in-depth explanation of NCDS, this paper extends the framework with more careful regularization, a conditional variant of the framework for handling multiple tasks, and an uncertainty-driven approach to latent obstacle avoidance. Experiments verify that the developed system has the flexibility of ordinary neural networks while providing the stability guarantees needed for autonomous robotics.
- Abstract(参考訳): 完全な自律ロボットが望ましくないあるいは潜在的に有害な行動を起こさないことを保証するためには、安定性の保証が不可欠である。
我々は最近,契約安定性を保証するニューラルネットワークアーキテクチャであるNCDS(Neural Contractive Dynamical Systems)を提案している。
これにより、実証から学ぶアプローチは、簡単に安定性の保証を提供することができる。
しかし、私たちの初期の研究はいくつかの未回答の質問を残しました。
本稿では、NCDSの詳細な説明に加えて、より慎重な正規化、複数のタスクを処理するフレームワークの条件変種、遅延障害回避に対する不確実性駆動アプローチなどによりフレームワークを拡張した。
実験では、開発システムは、自律ロボット工学に必要な安定性を確保しながら、通常のニューラルネットワークの柔軟性があることを検証する。
関連論文リスト
- ABNet: Attention BarrierNet for Safe and Scalable Robot Learning [58.4951884593569]
バリアベースの手法は、安全なロボット学習における主要なアプローチの1つである。
本稿では,より大規模な基本安全モデルを段階的に構築するスケーラブルなAttention BarrierNet(ABNet)を提案する。
2次元ロボット障害物回避、安全なロボット操作、視覚に基づくエンドツーエンド自動運転におけるABNetの強みを実証する。
論文 参考訳(メタデータ) (2024-06-18T19:37:44Z) - Lyapunov-stable Neural Control for State and Output Feedback: A Novel Formulation [67.63756749551924]
学習ベースのニューラルネットワーク(NN)制御ポリシは、ロボット工学と制御の幅広いタスクにおいて、印象的な経験的パフォーマンスを示している。
非線形力学系を持つNNコントローラのトラクション領域(ROA)に対するリアプノフ安定性の保証は困難である。
我々は、高速な経験的ファルシフィケーションと戦略的正則化を用いて、Lyapunov証明書とともにNNコントローラを学習するための新しいフレームワークを実証する。
論文 参考訳(メタデータ) (2024-04-11T17:49:15Z) - Neural Contractive Dynamical Systems [13.046426079291376]
完全自律型ロボットが望ましくない、あるいは潜在的に有害な行動を起こさないためには、安定性の保証が不可欠である。
本稿では,ニューラルアーキテクチャが収縮を保証するニューラル収縮力学系を学習するための新しい手法を提案する。
提案手法は, 現状技術よりも所望の力学を正確に符号化し, 安定性の保証がより少ないことを示す。
論文 参考訳(メタデータ) (2024-01-17T17:18:21Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
ディープニューラルネットワーク(DNN)は多くのシナリオで異常な結果を示した強力なツールです。
しかし、それらの複雑な設計と透明性の欠如は、現実世界のアプリケーションに適用する際の安全性上の懸念を提起する。
DNNの形式的検証(FV)は、安全面の証明可能な保証を提供する貴重なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-10T13:51:25Z) - Backward Reachability Analysis of Neural Feedback Loops: Techniques for
Linear and Nonlinear Systems [59.57462129637796]
本稿では,ニューラルネットワークを用いた閉ループシステムの安全性検証のための後方到達性アプローチを提案する。
フィードバックループにおけるNNの存在は、その活性化関数の非線形性や、NNモデルは一般に可逆的ではないため、ユニークな問題セットを示す。
フィードフォワードNNで表される制御ポリシを持つ線形系と非線形系のBP過近似を計算するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-28T13:17:28Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
形式的安定性を保証するモデルに基づく強化学習フレームワークを提案する。
提案手法は,特徴表現を用いて信頼区間までシステムダイナミクスを学習する。
我々は、KCRLが、基礎となる未知のシステムとの有限数の相互作用において安定化ポリシーを学ぶことが保証されていることを示す。
論文 参考訳(メタデータ) (2022-06-03T17:27:04Z) - Stability Verification in Stochastic Control Systems via Neural Network
Supermartingales [17.558766911646263]
2つの新しい側面を持つ一般非線形制御問題に対するアプローチを提案する。
我々は、A.s.asymptotic stabilityの証明にランキング・スーパーガレス(RSM)を使用し、ニューラルネットワークの学習方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T13:05:14Z) - Robust Stability of Neural-Network Controlled Nonlinear Systems with
Parametric Variability [2.0199917525888895]
ニューラルネットワーク制御非線形システムの安定性と安定化性の理論を考案する。
このような頑健な安定化NNコントローラの計算には、安定性保証トレーニング(SGT)も提案されている。
論文 参考訳(メタデータ) (2021-09-13T05:09:30Z) - Recurrent Neural Network Controllers Synthesis with Stability Guarantees
for Partially Observed Systems [6.234005265019845]
本稿では、不確実な部分観測システムのための動的制御系として、リカレントニューラルネットワーク(RNN)の重要なクラスを考える。
本稿では、再パラメータ化空間における安定性条件を反復的に強制する計画的ポリシー勾配法を提案する。
数値実験により,本手法は,より少ないサンプルを用いて制御器の安定化を学習し,政策勾配よりも高い最終性能を達成することを示す。
論文 参考訳(メタデータ) (2021-09-08T18:21:56Z) - Enforcing robust control guarantees within neural network policies [76.00287474159973]
本稿では、ニューラルネットワークによってパラメータ化され、ロバスト制御と同じ証明可能なロバスト性基準を適用した、一般的な非線形制御ポリシークラスを提案する。
提案手法は,複数の領域において有効であり,既存のロバスト制御法よりも平均ケース性能が向上し,(非ロバスト)深部RL法よりも最悪のケース安定性が向上した。
論文 参考訳(メタデータ) (2020-11-16T17:14:59Z) - Safe Active Dynamics Learning and Control: A Sequential
Exploration-Exploitation Framework [30.58186749790728]
本研究では,力学の不確実性の存在下での安全性を維持するための理論的に正当なアプローチを提案する。
我々のフレームワークは、常に全ての制約の高確率満足度を保証します。
この理論解析は、オンライン適応能力を改善する最終層メタラーニングモデルの2つの正則化を動機付けている。
論文 参考訳(メタデータ) (2020-08-26T17:39:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。