論文の概要: SL-YOLO: A Stronger and Lighter Drone Target Detection Model
- arxiv url: http://arxiv.org/abs/2411.11477v2
- Date: Mon, 02 Dec 2024 05:58:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 20:22:37.898010
- Title: SL-YOLO: A Stronger and Lighter Drone Target Detection Model
- Title(参考訳): SL-YOLO:より強力で軽量なドローンターゲット検出モデル
- Authors: Defan Chen, Luchan Zhang,
- Abstract要約: 本稿では,小型目標検出のボトルネックを解消する革命モデルSL-YOLO(Stronger and Lighter YOLO)を提案する。
本稿では,最も難易度の高い環境においても,非並列検出精度を確保することのできる,大規模機能融合の先駆的手法を提案する。
VisDrone 2019データセットの実験結果によると,mAP@0.5が43.0%から46.9%に向上した。
モデルパラメータは 11.1M から 9.6M に減少し、FPS は 132 に到達し、資源制約のある環境でのリアルタイムの小さな物体検出に理想的な解となる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Detecting small objects in complex scenes, such as those captured by drones, is a daunting challenge due to the difficulty in capturing the complex features of small targets. While the YOLO family has achieved great success in large target detection, its performance is less than satisfactory when faced with small targets. Because of this, this paper proposes a revolutionary model SL-YOLO (Stronger and Lighter YOLO) that aims to break the bottleneck of small target detection. We propose the Hierarchical Extended Path Aggregation Network (HEPAN), a pioneering cross-scale feature fusion method that can ensure unparalleled detection accuracy even in the most challenging environments. At the same time, without sacrificing detection capabilities, we design the C2fDCB lightweight module and add the SCDown downsampling module to greatly reduce the model's parameters and computational complexity. Our experimental results on the VisDrone2019 dataset reveal a significant improvement in performance, with mAP@0.5 jumping from 43.0% to 46.9% and mAP@0.5:0.95 increasing from 26.0% to 28.9%. At the same time, the model parameters are reduced from 11.1M to 9.6M, and the FPS can reach 132, making it an ideal solution for real-time small object detection in resource-constrained environments.
- Abstract(参考訳): ドローンが捉えたような複雑な場面で小さな物体を検知することは、小さなターゲットの複雑な特徴を捉えるのが難しいため、非常に難しい課題である。
YOLOファミリーは大規模な目標検出において大きな成功を収めてきたが、小さな目標に直面した場合、その性能は十分ではない。
そこで本研究では,小型目標検出のボトルネックを解消する革命モデルSL-YOLO(Stronger and Lighter YOLO)を提案する。
階層拡張経路集約ネットワーク(HEPAN)を提案する。これは、最も困難な環境においても、非並列検出精度を確保することができる、先駆的なクロススケール機能融合手法である。
同時に、検出機能を犠牲にすることなく、C2fDCB軽量モジュールを設計し、モデルのパラメータと計算複雑性を大幅に低減するためにSCDownダウンサンプリングモジュールを追加します。
VisDrone2019データセットの実験結果によると、mAP@0.5が43.0%から46.9%に、mAP@0.5:0.95が26.0%から28.9%に向上した。
同時に、モデルパラメータは11.1Mから9.6Mに削減され、FPSは132に到達し、リソース制約のある環境でのリアルタイムな小さなオブジェクト検出の理想的な解決策となる。
関連論文リスト
- LAM-YOLO: Drones-based Small Object Detection on Lighting-Occlusion Attention Mechanism YOLO [0.9062164411594178]
LAM-YOLOは、ドローンベースの画像に特化して設計されたオブジェクト検出モデルである。
我々は、異なる照明条件下での小さな目標の視認性を高めるために、光遮断注意機構を導入する。
次に、回帰損失関数として改良されたSIB-IoUを用いてモデル収束を加速し、局所化精度を向上させる。
論文 参考訳(メタデータ) (2024-11-01T10:00:48Z) - SOD-YOLOv8 -- Enhancing YOLOv8 for Small Object Detection in Traffic Scenes [1.3812010983144802]
Small Object Detection YOLOv8 (SOD-YOLOv8) は、多数の小さなオブジェクトを含むシナリオ用に設計されている。
SOD-YOLOv8は小さなオブジェクト検出を大幅に改善し、様々なメトリクスで広く使われているモデルを上回っている。
ダイナミックな現実世界の交通シーンでは、SOD-YOLOv8は様々な状況で顕著な改善を示した。
論文 参考訳(メタデータ) (2024-08-08T23:05:25Z) - SIRST-5K: Exploring Massive Negatives Synthesis with Self-supervised
Learning for Robust Infrared Small Target Detection [53.19618419772467]
単一フレーム赤外線小ターゲット検出(SIRST)は、乱雑な背景から小さなターゲットを認識することを目的としている。
Transformerの開発に伴い、SIRSTモデルのスケールは常に増大している。
赤外線小ターゲットデータの多彩な多様性により,本アルゴリズムはモデル性能と収束速度を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-08T16:14:54Z) - YOLO-TLA: An Efficient and Lightweight Small Object Detection Model based on YOLOv5 [19.388112026410045]
YOLO-TLAは、YOLOv5上に構築された高度な物体検出モデルである。
まず、ネックネットワークピラミッドアーキテクチャにおいて、小さなオブジェクトに対する検出層を新たに導入する。
このモジュールはスライディングウィンドウの特徴抽出を使い、計算要求とパラメータ数の両方を効果的に最小化する。
論文 参考訳(メタデータ) (2024-02-22T05:55:17Z) - MODIPHY: Multimodal Obscured Detection for IoT using PHantom Convolution-Enabled Faster YOLO [10.183459286746196]
YOLO Phantomは、史上最小のYOLOモデルのひとつです。
YOLO Phantomは最新のYOLOv8nモデルと同等の精度を実現し、パラメータとモデルサイズを同時に削減する。
実際の有効性は、高度な低照度カメラとRGBカメラを備えたIoTプラットフォーム上で実証され、AWSベースの通知エンドポイントにシームレスに接続される。
論文 参考訳(メタデータ) (2024-02-12T18:56:53Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - YOLO-MS: Rethinking Multi-Scale Representation Learning for Real-time
Object Detection [80.11152626362109]
YOLO-MSと呼ばれる効率的かつ高性能な物体検出器を提供する。
私たちは、他の大規模なデータセットに頼ることなく、MS COCOデータセット上でYOLO-MSをスクラッチからトレーニングします。
私たちの仕事は、他のYOLOモデルのプラグイン・アンド・プレイ・モジュールとしても使えます。
論文 参考訳(メタデータ) (2023-08-10T10:12:27Z) - Ultra-low Power Deep Learning-based Monocular Relative Localization
Onboard Nano-quadrotors [64.68349896377629]
この研究は、2つのピアナノドロンのディープニューラルネットワーク(DNN)を介して、単分子の相対的な局所化に対処する、新しい自律的なエンドツーエンドシステムを示す。
超制約ナノドローンプラットフォームに対処するため,データセットの増大,量子化,システム最適化などを含む垂直統合フレームワークを提案する。
実験の結果,DNNは低分解能モノクローム画像のみを用いて最大2mの距離で10cmのターゲットナノドローンを正確に局在させることができることがわかった。
論文 参考訳(メタデータ) (2023-03-03T14:14:08Z) - EdgeYOLO: An Edge-Real-Time Object Detector [69.41688769991482]
本稿では, 最先端のYOLOフレームワークをベースとした, 効率的で低複雑さかつアンカーフリーな物体検出器を提案する。
我々は,訓練中の過剰適合を効果的に抑制する拡張データ拡張法を開発し,小型物体の検出精度を向上させるためにハイブリッドランダム損失関数を設計する。
私たちのベースラインモデルは、MS 2017データセットで50.6%のAP50:95と69.8%のAP50、VisDrone 2019-DETデータセットで26.4%のAP50と44.8%のAP50に達し、エッジコンピューティングデバイスNvidia上でリアルタイム要求(FPS>=30)を満たす。
論文 参考訳(メタデータ) (2023-02-15T06:05:14Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices [13.62426382827205]
実時間物体検出器のPP-PicoDetファミリは,モバイルデバイスの物体検出において優れた性能を発揮する。
モデルは、他の一般的なモデルと比較して、精度とレイテンシのトレードオフを改善する。
論文 参考訳(メタデータ) (2021-11-01T12:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。