Preempting Text Sanitization Utility in Resource-Constrained Privacy-Preserving LLM Interactions
- URL: http://arxiv.org/abs/2411.11521v1
- Date: Mon, 18 Nov 2024 12:31:22 GMT
- Title: Preempting Text Sanitization Utility in Resource-Constrained Privacy-Preserving LLM Interactions
- Authors: Robin Carpentier, Benjamin Zi Hao Zhao, Hassan Jameel Asghar, Dali Kaafar,
- Abstract summary: We propose an architecture to help estimate the impact of sanitization on a prompt before it is sent to the Large Language Models.
Our evaluation of this architecture revealed a significant problem with text sanitization based on Differential Privacy.
- Score: 4.372695214012181
- License:
- Abstract: Individuals have been increasingly interacting with online Large Language Models (LLMs), both in their work and personal lives. These interactions raise privacy issues as the LLMs are typically hosted by third-parties who can gather a variety of sensitive information about users and their companies. Text Sanitization techniques have been proposed in the literature and can be used to sanitize user prompts before sending them to the LLM. However, sanitization has an impact on the downstream task performed by the LLM, and often to such an extent that it leads to unacceptable results for the user. This is not just a minor annoyance, with clear monetary consequences as LLM services charge on a per use basis as well as great amount of computing resources wasted. We propose an architecture leveraging a Small Language Model (SLM) at the user-side to help estimate the impact of sanitization on a prompt before it is sent to the LLM, thus preventing resource losses. Our evaluation of this architecture revealed a significant problem with text sanitization based on Differential Privacy, on which we want to draw the attention of the community for further investigation.
Related papers
- Differentially Private Steering for Large Language Model Alignment [55.30573701583768]
We present the first study of aligning Large Language Models with private datasets.
Our work proposes the textitunderlinePrivate underlineSteering for LLM underlineAment (PSA) algorithm.
Our results show that PSA achieves DP guarantees for LLM alignment with minimal loss in performance.
arXiv Detail & Related papers (2025-01-30T17:58:36Z) - Evaluation of LLM Vulnerabilities to Being Misused for Personalized Disinformation Generation [0.5070610131852027]
Large language models (LLMs) can be effectively misused for generating disinformation news articles.
This study fills this gap by evaluation of vulnerabilities of recent open and closed LLMs.
Our results demonstrate the need for stronger safety-filters and disclaimers.
arXiv Detail & Related papers (2024-12-18T09:48:53Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
Large Language Models (LLMs) have become integral to numerous domains, significantly advancing applications in data management, mining, and analysis.
Despite the critical nature of this issue, there has been no existing literature to offer a comprehensive assessment of data privacy risks in LLMs.
Our paper introduces LLM-PBE, a toolkit crafted specifically for the systematic evaluation of data privacy risks in LLMs.
arXiv Detail & Related papers (2024-08-23T01:37:29Z) - Robustifying Safety-Aligned Large Language Models through Clean Data Curation [11.273749179260468]
Large language models (LLMs) are vulnerable when trained on datasets containing harmful content.
In this paper, we propose a data curation framework designed to counter adversarial impacts in both scenarios.
arXiv Detail & Related papers (2024-05-24T04:50:38Z) - Locally Differentially Private In-Context Learning [8.659575019965152]
Large pretrained language models (LLMs) have shown surprising In-Context Learning (ICL) ability.
This paper proposes a locally differentially private framework of in-context learning (LDP-ICL)
Considering the mechanisms of in-context learning in Transformers by gradient descent, we provide an analysis of the trade-off between privacy and utility in such LDP-ICL.
arXiv Detail & Related papers (2024-05-07T06:05:43Z) - Understanding Privacy Risks of Embeddings Induced by Large Language Models [75.96257812857554]
Large language models show early signs of artificial general intelligence but struggle with hallucinations.
One promising solution is to store external knowledge as embeddings, aiding LLMs in retrieval-augmented generation.
Recent studies experimentally showed that the original text can be partially reconstructed from text embeddings by pre-trained language models.
arXiv Detail & Related papers (2024-04-25T13:10:48Z) - Prevalence and prevention of large language model use in crowd work [11.554258761785512]
We show that the use of large language models (LLMs) is prevalent among crowd workers.
We show that targeted mitigation strategies can significantly reduce, but not eliminate, LLM use.
arXiv Detail & Related papers (2023-10-24T09:52:09Z) - "It's a Fair Game", or Is It? Examining How Users Navigate Disclosure Risks and Benefits When Using LLM-Based Conversational Agents [27.480959048351973]
The widespread use of Large Language Model (LLM)-based conversational agents (CAs) raises many privacy concerns.
We analyzed sensitive disclosures in real-world ChatGPT conversations and conducted semi-structured interviews with 19 LLM-based CA users.
We found that users are constantly faced with trade-offs between privacy, utility, and convenience when using LLM-based CAs.
arXiv Detail & Related papers (2023-09-20T21:34:36Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.