GNN-Based Code Annotation Logic for Establishing Security Boundaries in C Code
- URL: http://arxiv.org/abs/2411.11567v2
- Date: Tue, 19 Nov 2024 08:35:01 GMT
- Title: GNN-Based Code Annotation Logic for Establishing Security Boundaries in C Code
- Authors: Varun Gadey, Raphael Goetz, Christoph Sendner, Sampo Sovio, Alexandra Dmitrienko,
- Abstract summary: Securing sensitive operations in today's interconnected software landscape is crucial yet challenging.
Modern platforms rely on Trusted Execution Environments (TEEs) to isolate security sensitive code from the main system.
Code Logic (CAL) is a pioneering tool that automatically identifies security sensitive components for TEE isolation.
- Score: 41.10157750103835
- License:
- Abstract: Securing sensitive operations in today's interconnected software landscape is crucial yet challenging. Modern platforms rely on Trusted Execution Environments (TEEs), such as Intel SGX and ARM TrustZone, to isolate security sensitive code from the main system, reducing the Trusted Computing Base (TCB) and providing stronger assurances. However, identifying which code should reside in TEEs is complex and requires specialized expertise, which is not supported by current automated tools. Existing solutions often migrate entire applications to TEEs, leading to suboptimal use and an increased TCB. To address this gap, we propose Code Annotation Logic (CAL), a pioneering tool that automatically identifies security sensitive components for TEE isolation. CAL analyzes codebases, leveraging a graph-based approach with novel feature construction and employing a custom graph neural network model to accurately determine which parts of the code should be isolated. CAL effectively optimizes TCB, reducing the burden of manual analysis and enhancing overall security. Our contributions include the definition of security sensitive code, the construction and labeling of a comprehensive dataset of source files, a feature rich graph based data preparation pipeline, and the CAL model for TEE integration. Evaluation results demonstrate CAL's efficacy in identifying sensitive code with a recall of 86.05%, an F1 score of 81.56%, and an identification rate of 91.59% for security sensitive functions. By enabling efficient code isolation, CAL advances the secure development of applications using TEEs, offering a practical solution for developers to reduce attack vectors.
Related papers
- Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
Power system load data can inadvertently reveal the daily routines of residential users, posing a risk to their property security.
We introduce a Markovian Switching-based distributed training framework, the convergence of which is substantiated through rigorous theoretical analysis.
Case studies employing real-world power system load data validate the efficacy of our proposed algorithm.
arXiv Detail & Related papers (2024-02-02T16:39:08Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
Confidential computing enables the protection of confidential code and data in a co-tenanted cloud deployment using specialized hardware isolation units called Trusted Execution Environments (TEEs)
TEEs offer low-level C/C++-based toolchains that are susceptible to inherent memory safety vulnerabilities and lack language constructs to monitor explicit and implicit information-flow leaks.
We address the above with HasTEE+, a domain-specific language (cla) embedded in Haskell that enables programming TEEs in a high-level language with strong type-safety.
arXiv Detail & Related papers (2024-01-17T00:56:23Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
Deep Neural Networks (DNNs) are powerful tools that have shown extraordinary results in many scenarios.
However, their intricate designs and lack of transparency raise safety concerns when applied in real-world applications.
Formal Verification (FV) of DNNs has emerged as a valuable solution to provide provable guarantees on the safety aspect.
arXiv Detail & Related papers (2023-12-10T13:51:25Z) - Secure Instruction and Data-Level Information Flow Tracking Model for RISC-V [0.0]
Unauthorized access, fault injection, and privacy invasion are potential threats from untrusted actors.
We propose an integrated Information Flow Tracking (IFT) technique to enable runtime security to protect system integrity.
This study proposes a multi-level IFT model that integrates a hardware-based IFT technique with a gate-level-based IFT (GLIFT) technique.
arXiv Detail & Related papers (2023-11-17T02:04:07Z) - Static Code Analysis in the AI Era: An In-depth Exploration of the
Concept, Function, and Potential of Intelligent Code Analysis Agents [2.8686437689115363]
We introduce the Intelligent Code Analysis Agent (ICAA), a novel concept combining AI models, engineering process designs, and traditional non-AI components.
We observed a substantial improvement in bug detection accuracy, reducing the false-positive rate to 66% from the baseline's 85%, and a promising recall rate of 60.8%.
Despite this challenge, our findings suggest that the ICAA holds considerable potential to revolutionize software quality assurance.
arXiv Detail & Related papers (2023-10-13T03:16:58Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
This research focuses on finding an efficient machine learning algorithm to identify software weaknesses from requirement specifications.
Keywords extracted using latent semantic analysis help map the CWE categories to PROMISE_exp. Naive Bayes, support vector machine (SVM), decision trees, neural network, and convolutional neural network (CNN) algorithms were tested.
arXiv Detail & Related papers (2023-08-10T13:19:10Z) - A Novel Approach to Identify Security Controls in Source Code [4.598579706242066]
This paper enumerates a comprehensive list of commonly used security controls and creates a dataset for each one of them.
It uses the state-of-the-art NLP technique Bidirectional Representations from Transformers (BERT) and the Tactic Detector from our prior work to show that security controls could be identified with high confidence.
arXiv Detail & Related papers (2023-07-10T21:14:39Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
We propose a deep learning model that learns to detect some of the common categories of security vulnerabilities in source code efficiently.
The model builds an accurate understanding of code semantics with a lot less learnable parameters.
The proposed AI achieves 98.40% F1-score on specific CWEs from the benchmarked NIST SARD dataset.
arXiv Detail & Related papers (2021-04-19T11:50:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.