論文の概要: Exploring the Requirements of Clinicians for Explainable AI Decision Support Systems in Intensive Care
- arxiv url: http://arxiv.org/abs/2411.11774v1
- Date: Mon, 18 Nov 2024 17:53:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:27:45.559916
- Title: Exploring the Requirements of Clinicians for Explainable AI Decision Support Systems in Intensive Care
- Title(参考訳): 集中治療における説明可能なAI意思決定支援システムのための臨床医の必要性を探る
- Authors: Jeffrey N. Clark, Matthew Wragg, Emily Nielsen, Miquel Perello-Nieto, Nawid Keshtmand, Michael Ambler, Shiv Sharma, Christopher P. Bourdeaux, Amberly Brigden, Raul Santos-Rodriguez,
- Abstract要約: Thematic analysis revealed three coremes: (T1) ICU decision-making based on a wide range factors, (T2) patient state is challenge for shared decision-making, (T3) requirements and capabilities of AI decision support system。
臨床的なインプットからデザインレコメンデーションを含め、将来のAIシステムに集中治療を知らせるための洞察を提供する。
- 参考スコア(独自算出の注目度): 1.950650243134358
- License:
- Abstract: There is a growing need to understand how digital systems can support clinical decision-making, particularly as artificial intelligence (AI) models become increasingly complex and less human-interpretable. This complexity raises concerns about trustworthiness, impacting safe and effective adoption of such technologies. Improved understanding of decision-making processes and requirements for explanations coming from decision support tools is a vital component in providing effective explainable solutions. This is particularly relevant in the data-intensive, fast-paced environments of intensive care units (ICUs). To explore these issues, group interviews were conducted with seven ICU clinicians, representing various roles and experience levels. Thematic analysis revealed three core themes: (T1) ICU decision-making relies on a wide range of factors, (T2) the complexity of patient state is challenging for shared decision-making, and (T3) requirements and capabilities of AI decision support systems. We include design recommendations from clinical input, providing insights to inform future AI systems for intensive care.
- Abstract(参考訳): 特に人工知能(AI)モデルが複雑化し、人間による解釈が弱まるにつれて、デジタルシステムが臨床的意思決定をどのようにサポートするかを理解する必要性が高まっている。
この複雑さは、信頼性に関する懸念を高め、そのようなテクノロジの安全かつ効果的な採用に影響を与える。
意思決定プロセスの理解と意思決定支援ツールからの説明要求の改善は、効果的な説明可能なソリューションを提供する上で重要な要素である。
これは特に、集中治療ユニット(ICU)のデータ集約的、急激なペースの環境に関係している。
これらの課題を調査するため、7人のICU臨床医とグループインタビューを行い、様々な役割と経験レベルを表現した。
Thematic analysis revealed three coremes: (T1) ICU decision-making based on a wide range factors, (T2) patient state is challenge for shared decision-making, (T3) requirements and capabilities of AI decision support system。
臨床的なインプットからデザインレコメンデーションを含め、将来のAIシステムに集中治療を知らせるための洞察を提供する。
関連論文リスト
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
我々は、逆説(AE)の方法論を最先端の強化学習フレームワークに拡張する。
学習したAI制御システムは、敵のタンパリングに対する堅牢性を示す。
トレーニング/学習フレームワークでは、この技術は人間のインタラクションを通じてAIの決定と説明の両方を改善することができる。
論文 参考訳(メタデータ) (2024-07-03T15:38:57Z) - Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts [1.9374282535132377]
本論文は,医療関連テキストにおける感情評価における人工知能の利用に関する方法論的考察である。
我々は、感情分析を強化し、感情を分類し、患者の結果を予測するためにAIを利用する多くの研究を精査する。
AIの倫理的応用を保証すること、患者の機密性を保護すること、アルゴリズムの手続きにおける潜在的なバイアスに対処することを含む、継続的な課題がある。
論文 参考訳(メタデータ) (2024-03-14T15:58:13Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Designing Interpretable ML System to Enhance Trust in Healthcare: A Systematic Review to Proposed Responsible Clinician-AI-Collaboration Framework [13.215318138576713]
論文は、解釈可能なAIプロセス、方法、応用、および医療における実装の課題についてレビューする。
医療における堅牢な解釈可能性アプローチの重要な役割を包括的に理解することを目的としている。
論文 参考訳(メタデータ) (2023-11-18T12:29:18Z) - Clairvoyance: A Pipeline Toolkit for Medical Time Series [95.22483029602921]
時系列学習は、データ駆動の*クリニカルな意思決定支援のパンとバターである*
Clairvoyanceは、ソフトウェアツールキットとして機能する、統合されたエンドツーエンドのオートMLフレンドリなパイプラインを提案する。
Clairvoyanceは、臨床時系列MLのための包括的で自動化可能なパイプラインの生存可能性を示す最初のものである。
論文 参考訳(メタデータ) (2023-10-28T12:08:03Z) - Applying Artificial Intelligence to Clinical Decision Support in Mental
Health: What Have We Learned? [0.0]
本稿では,近年開発されたAI-CDSSであるAifred Healthを事例として,うつ病における治療の選択と管理を支援する。
我々は、このAI-CDSSの開発およびテスト中にもたらされた原則と、実装を容易にするために開発された実践的ソリューションの両方を考慮する。
論文 参考訳(メタデータ) (2023-03-06T21:40:51Z) - Informing clinical assessment by contextualizing post-hoc explanations
of risk prediction models in type-2 diabetes [50.8044927215346]
本研究は, 合併症リスク予測のシナリオを考察し, 患者の臨床状態に関する文脈に焦点を当てる。
我々は、リスク予測モデル推論に関する文脈を提示し、その受容性を評価するために、最先端のLLMをいくつか採用する。
本論文は,実世界における臨床症例における文脈説明の有効性と有用性を明らかにする最初のエンドツーエンド分析の1つである。
論文 参考訳(メタデータ) (2023-02-11T18:07:11Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z) - Moral Decision-Making in Medical Hybrid Intelligent Systems: A Team
Design Patterns Approach to the Bias Mitigation and Data Sharing Design
Problems [0.0]
チームデザインパターン(TDP)は、決定が道徳的な要素を持つ設計問題の成功と再利用可能な構成を記述する。
本稿では,医療用hiシステムにおける2つの設計問題の解のセットについて述べる。
パターンの理解性、有効性、一般化性に関するユーザビリティを評価するために、調査が作成されました。
論文 参考訳(メタデータ) (2021-02-16T17:09:43Z) - Artificial Intelligence Decision Support for Medical Triage [0.0]
我々はトリアージシステムを開発し、現在、ヨーロッパ最大の遠隔医療プロバイダーで使用中である。
本システムは,モバイルアプリケーションを用いた患者とのインタラクションを通じて,ケア代替案の評価を行う。
最初の一連の症状に基づいて、トリアージアプリケーションはAIを利用したパーソナライズされた質問を生成し、問題をより正確に識別する。
論文 参考訳(メタデータ) (2020-11-09T16:45:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。