論文の概要: Active learning for efficient discovery of optimal gene combinations in the combinatorial perturbation space
- arxiv url: http://arxiv.org/abs/2411.12010v1
- Date: Mon, 18 Nov 2024 19:49:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:35:35.157681
- Title: Active learning for efficient discovery of optimal gene combinations in the combinatorial perturbation space
- Title(参考訳): 組換え摂動空間における最適な遺伝子の組み合わせの効率的な発見のための能動的学習
- Authors: Jason Qin, Hans-Hermann Wessels, Carlos Fernandez-Granda, Yuhan Hao,
- Abstract要約: NAIADは、最適な遺伝子ペアを効率的に発見する、アクティブな学習フレームワークである。
4つのCRISPR摂動データセットで、合計35万以上の遺伝子相互作用が評価された。
我々のフレームワークは、新規で効果的な遺伝子の組み合わせの同定を改善し、CRISPRライブラリーの設計をより効率的にする。
- 参考スコア(独自算出の注目度): 13.409130886920579
- License:
- Abstract: The advancement of novel combinatorial CRISPR screening technologies enables the identification of synergistic gene combinations on a large scale. This is crucial for developing novel and effective combination therapies, but the combinatorial space makes exhaustive experimentation infeasible. We introduce NAIAD, an active learning framework that efficiently discovers optimal gene pairs capable of driving cells toward desired cellular phenotypes. NAIAD leverages single-gene perturbation effects and adaptive gene embeddings that scale with the training data size, mitigating overfitting in small-sample learning while capturing complex gene interactions as more data is collected. Evaluated on four CRISPR combinatorial perturbation datasets totaling over 350,000 genetic interactions, NAIAD, trained on small datasets, outperforms existing models by up to 40\% relative to the second-best. NAIAD's recommendation system prioritizes gene pairs with the maximum predicted effects, resulting in the highest marginal gain in each AI-experiment round and accelerating discovery with fewer CRISPR experimental iterations. Our NAIAD framework (https://github.com/NeptuneBio/NAIAD) improves the identification of novel, effective gene combinations, enabling more efficient CRISPR library design and offering promising applications in genomics research and therapeutic development.
- Abstract(参考訳): 組換えCRISPRスクリーニング技術の進歩により、大規模な相乗的遺伝子の組み合わせの同定が可能となった。
これは新規で効果的な組み合わせ療法の開発に不可欠であるが、組合せ空間は徹底的な実験を可能にする。
NAIADは,細胞を所望の細胞性表現型に誘導できる最適な遺伝子対を効率的に発見する,能動的学習フレームワークである。
NAIADは、訓練データサイズに合わせてスケールする単一遺伝子摂動効果と適応型遺伝子埋め込みを活用し、より多くのデータが収集されるにつれて複雑な遺伝子相互作用を捉えながら、小さなサンプル学習における過度な適合を緩和する。
4つのCRISPR組み合わせ摂動データセットで評価され、350,000以上の遺伝的相互作用が評価され、NAADは小さなデータセットで訓練され、既存のモデルよりも最大40倍高い。
NAIADのレコメンデーションシステムは、予測される最大効果で遺伝子ペアを優先順位付けし、その結果、AI実験ラウンド毎に最高限の利得を達成し、CRISPR実験のイテレーションを少なくして発見を加速する。
NAIADフレームワーク(https://github.com/NeptuneBio/NAIAD)は、新規で効果的な遺伝子の組み合わせの同定を改善し、CRISPRライブラリの設計を効率化し、ゲノム研究および治療開発における有望な応用を提供する。
関連論文リスト
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
本稿では,遺伝子・遺伝子相互作用の探索に先進的なトランスフォーマーモデルを活用する,データ駆動型計算ツールを活用した革新的なアプローチを提案する。
新たな重み付き多様化サンプリングアルゴリズムは、データセットのたった2パスで、各データサンプルの多様性スコアを算出する。
論文 参考訳(メタデータ) (2024-10-21T03:35:23Z) - Enhanced Gene Selection in Single-Cell Genomics: Pre-Filtering Synergy and Reinforced Optimization [16.491060073775884]
単一セルゲノミクスにおけるクラスタリングタスクに適用可能な反復的遺伝子パネル選択戦略を提案する。
本手法は、他の遺伝子選択アルゴリズムの結果を統合し、重要な予備的境界を提供する。
強化学習(RL)における探索プロセスの性質と,その連続最適化能力を取り入れた。
論文 参考訳(メタデータ) (2024-06-11T16:21:33Z) - Weakly Supervised Set-Consistency Learning Improves Morphological Profiling of Single-Cell Images [0.6491172192043603]
単一セル画像における摂動効果の学習表現を改善するために,設定レベルの整合性学習アルゴリズムset-DINOを提案する。
5000以上の遺伝的摂動を伴う大規模光ポーリングスクリーニングデータセットの実験を行った。
論文 参考訳(メタデータ) (2024-06-08T00:53:30Z) - CRISPR-GPT: An LLM Agent for Automated Design of Gene-Editing Experiments [51.41735920759667]
大規模言語モデル(LLM)は様々なタスクにおいて有望であるが、しばしば特定の知識が欠如し、生物学的設計の問題を正確に解くのに苦労する。
本研究では,CRISPRに基づく遺伝子編集実験の設計プロセスを自動化するために,ドメイン知識と外部ツールを付加したLCMエージェントであるCRISPR-GPTを紹介する。
論文 参考訳(メタデータ) (2024-04-27T22:59:17Z) - Exhaustive Exploitation of Nature-inspired Computation for Cancer Screening in an Ensemble Manner [20.07173196364489]
本研究では、遺伝子発現データからがん分類のためのアンサンブル学習を改善するために、進化最適化逆アンサンブル学習(EODE)と呼ばれるフレームワークを提案する。
各種癌種を含む35の遺伝子発現ベンチマークデータセットを対象に実験を行った。
論文 参考訳(メタデータ) (2024-04-06T08:07:48Z) - CRISPR: Ensemble Model [20.268713698436326]
正確で一般化可能なsgRNA設計のための新しいアンサンブル学習法を提案する。
本手法は, 新規遺伝子や細胞に対しても高い感度, 特異性を有するsgRNAの設計に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-03-05T14:55:14Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Neural Design for Genetic Perturbation Experiments [16.95249173404529]
我々は、クエリ(アーム)と出力(リワード)の異なる機能関係の下で、ほぼ最適なアームを見つけるために、最適アーム除去原理を導入する。
OAEはまた、GeneDiscoの実験的計画課題において、ベンチマークアルゴリズムを4つのデータセットのうち3つで上回っている。
論文 参考訳(メタデータ) (2022-07-26T10:59:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。