論文の概要: HoGA: Higher-Order Graph Attention via Diversity-Aware k-Hop Sampling
- arxiv url: http://arxiv.org/abs/2411.12052v2
- Date: Wed, 29 Oct 2025 22:00:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-31 16:05:09.231197
- Title: HoGA: Higher-Order Graph Attention via Diversity-Aware k-Hop Sampling
- Title(参考訳): HoGA: 多様性を意識したkホップサンプリングによる高階グラフアテンション
- Authors: Thomas Bailie, Yun Sing Koh, Karthik Mukkavilli,
- Abstract要約: 我々は,特徴ベクトル間の多様性を最大化するために,部分グラフをサンプリングしてk次注目行列を構成する高次グラフ注意(HoGA)モジュールを紹介する。
HoGAは、すべてのベンチマークノード分類データセットで少なくとも5%の精度向上を実現し、8つのデータセットのうち6つで最近のベースラインを上回っている。
- 参考スコア(独自算出の注目度): 8.586564611972271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graphs model latent variable relationships in many real-world systems, and Message Passing Neural Networks (MPNNs) are widely used to learn such structures for downstream tasks. While edge-based MPNNs effectively capture local interactions, their expressive power is theoretically bounded, limiting the discovery of higher-order relationships. We introduce the Higher-Order Graph Attention (HoGA) module, which constructs a k-order attention matrix by sampling subgraphs to maximize diversity among feature vectors. Unlike existing higher-order attention methods that greedily resample similar k-order relationships, HoGA targets diverse modalities in higher-order topology, reducing redundancy and expanding the range of captured substructures. Applied to two single-hop attention models, HoGA achieves at least a 5% accuracy gain on all benchmark node classification datasets and outperforms recent baselines on six of eight datasets. Code is available at https://github.com/TB862/Higher_Order.
- Abstract(参考訳): グラフは、多くの実世界のシステムにおける潜在変数関係をモデル化し、メッセージパッシングニューラルネットワーク(MPNN)は、下流タスクのためのそのような構造を学ぶために広く使われている。
エッジベースのMPNNは局所的な相互作用を効果的に捉えるが、その表現力は理論的に有界であり、高次関係の発見を制限する。
我々は,特徴ベクトル間の多様性を最大化するために,部分グラフをサンプリングしてk次注目行列を構成する高次グラフアテンション(HoGA)モジュールを紹介する。
類似のk階関係を鮮明に再サンプリングする既存の高階アテンション法とは異なり、HoGAは高階トポロジーにおける様々なモダリティをターゲットにしており、冗長性を低減し、捕獲されたサブ構造の範囲を広げている。
2つのシングルホップアテンションモデルに適用されたHoGAは、すべてのベンチマークノード分類データセットで少なくとも5%の精度向上を実現し、8つのデータセットのうち6つで最近のベースラインを上回っている。
コードはhttps://github.com/TB862/Higher_Order.comから入手できる。
関連論文リスト
- Divide-Then-Rule: A Cluster-Driven Hierarchical Interpolator for Attribute-Missing Graphs [51.13363550716544]
ディープグラフクラスタリングは、不完全な属性を持つノードを異なるクラスタに分割することを目的とした教師なしのタスクである。
既存の属性欠落グラフの計算法は、ノード近傍で利用可能な情報の量が異なることを説明できないことが多い。
この問題に対処するために、DTRGC(Divide-Then-Rule Graph Completion)を提案する。
論文 参考訳(メタデータ) (2025-07-12T03:33:19Z) - Beyond Message Passing: Neural Graph Pattern Machine [50.78679002846741]
本稿では,グラフサブストラクチャから直接学習することで,メッセージパッシングをバイパスする新しいフレームワークであるNeural Graph Pattern Machine(GPM)を紹介する。
GPMはタスク関連グラフパターンを効率的に抽出し、エンコードし、優先順位付けする。
論文 参考訳(メタデータ) (2025-01-30T20:37:47Z) - Efficient Topology-aware Data Augmentation for High-Degree Graph Neural Networks [2.7523980737007414]
高次グラフ(HDG)上のグラフニューラルネットワーク(GNN)のための効率的かつ効果的なフロントマウントデータ拡張フレームワークであるTADを提案する。
内部では、(i)構造埋め込みによる機能拡張と(ii)トポロジと属性対応グラフのスパース化という、2つの重要なモジュールが含まれている。
TADAは、ノード分類の観点から8つの実ホモ親和性/ヘテロ親和性HDG上でのメインストリームGNNモデルの予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-06-08T14:14:19Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
自己指導型自己学習(BOURNE)に基づく新しい統合グラフ異常検出フレームワークを提案する。
ノードとエッジ間のコンテキスト埋め込みを交換することで、ノードとエッジの異常を相互に検出できる。
BOURNEは、負のサンプリングを必要としないため、大きなグラフを扱う際の効率を高めることができる。
論文 参考訳(メタデータ) (2023-07-28T00:44:57Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
ノード分類のためのグラフエコー状態ネットワーク(GESN)を用いた異種グラフの課題に対処する。
GESNはグラフのための貯水池計算モデルであり、ノードの埋め込みは訓練されていないメッセージパッシング関数によって計算される。
実験の結果, 貯水池モデルでは, ほぼ完全に訓練された深層モデルに対して, より優れた精度あるいは同等の精度が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-14T19:42:31Z) - Generating Post-hoc Explanations for Skip-gram-based Node Embeddings by
Identifying Important Nodes with Bridgeness [19.448849238643582]
DeepWalk、LINE、struc2vec、PTE、UserItem2vec、RWJBGなどの教師なしノード埋め込みメソッドがSkip-gramモデルから登場した。
本稿では,Skip-gramをベースとした埋め込みのグローバルな説明は,スペクトルクラスタを意識した局所摂動下でのブリッジネスの計算によって得られることを示す。
Graph-wGD と呼ばれる新しい勾配に基づく説明法を提案し,学習グラフ埋め込みベクトルのグローバルな説明をより効率的に行えるようにした。
論文 参考訳(メタデータ) (2023-04-24T12:25:35Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
与えられたグラフの多重解像度表現を利用する階層的メッセージパッシングモデルについて検討する。
これにより、ローカル情報を失うことなく、大きな受容領域にまたがる特徴の学習が容易になる。
階層グラフネット(HGNet)を導入し、任意の2つの接続ノードに対して、最大対数長のメッセージパスパスが存在することを保証します。
論文 参考訳(メタデータ) (2021-07-15T16:24:22Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNNはReinforceed, recursive, flexible neighborhood selection guided multi-relational Graph Neural Network architectureである。
RioGNNは、各関係の個々の重要性の認識により、説明性を高めた差別的なノード埋め込みを学ぶことができる。
論文 参考訳(メタデータ) (2021-04-16T04:30:06Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
グラフニューラルネットワーク(GNN)はグラフ表現学習において大きな成功を収めている。
GNNは、実際には非常に異なるグラフ部分構造に対して同一の表現を生成する。
より強力なGNNは、最近高階試験を模倣して提案され、基礎となるグラフ構造を疎結合にできないため、非効率である。
本稿では,グラフ表現学習の新たなクラスとして距離分解(DE)を提案する。
論文 参考訳(メタデータ) (2020-08-31T23:15:40Z) - Pointer Graph Networks [48.44209547013781]
グラフニューラルネットワーク(GNN)は通常、前もって知られていると仮定される静的グラフに適用される。
Pointer Graph Networks (PGNs) モデル一般化能力を改善するために、追加の推論エッジを備えた拡張セットまたはグラフ。
PGNは各ノードが別のノードを動的に指し、メッセージがこれらのポインタを渡ることを可能にする。
論文 参考訳(メタデータ) (2020-06-11T12:52:31Z) - Unifying Graph Convolutional Neural Networks and Label Propagation [73.82013612939507]
LPAとGCNの関係を特徴・ラベルの平滑化と特徴・ラベルの影響の2点の観点から検討した。
理論解析に基づいて,ノード分類のためのGCNとLCAを統一するエンドツーエンドモデルを提案する。
我々のモデルは、既存の特徴に基づく注目モデルよりもタスク指向のノードラベルに基づく学習注意重みと見なすこともできる。
論文 参考訳(メタデータ) (2020-02-17T03:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。