Efficient Training in Multi-Agent Reinforcement Learning: A Communication-Free Framework for the Box-Pushing Problem
- URL: http://arxiv.org/abs/2411.12246v1
- Date: Tue, 19 Nov 2024 05:51:10 GMT
- Title: Efficient Training in Multi-Agent Reinforcement Learning: A Communication-Free Framework for the Box-Pushing Problem
- Authors: David Ge, Hao Ji,
- Abstract summary: This paper proposes a model called Shared Pool of Information (SPI) for self-organizing systems.
SPI enables information to be accessible to all agents and facilitates coordination, reducing force conflicts among agents and enhancing exploration efficiency.
- Score: 0.5524804393257919
- License:
- Abstract: Self-organizing systems consist of autonomous agents that can perform complex tasks and adapt to dynamic environments without a central controller. Prior research often relies on reinforcement learning to enable agents to gain the skills needed for task completion, such as in the box-pushing environment. However, when agents push from opposing directions during exploration, they tend to exert equal and opposite forces on the box, resulting in minimal displacement and inefficient training. This paper proposes a model called Shared Pool of Information (SPI), which enables information to be accessible to all agents and facilitates coordination, reducing force conflicts among agents and enhancing exploration efficiency. Through computer simulations, we demonstrate that SPI not only expedites the training process but also requires fewer steps per episode, significantly improving the agents' collaborative effectiveness.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Internet of Agents: Weaving a Web of Heterogeneous Agents for Collaborative Intelligence [79.5316642687565]
Existing multi-agent frameworks often struggle with integrating diverse capable third-party agents.
We propose the Internet of Agents (IoA), a novel framework that addresses these limitations.
IoA introduces an agent integration protocol, an instant-messaging-like architecture design, and dynamic mechanisms for agent teaming and conversation flow control.
arXiv Detail & Related papers (2024-07-09T17:33:24Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - S-Agents: Self-organizing Agents in Open-ended Environments [15.700383873385892]
We introduce a self-organizing agent system (S-Agents) with a "tree of agents" structure for dynamic workflow.
This structure can autonomously coordinate a group of agents, efficiently addressing the challenges of open and dynamic environments.
Our experiments demonstrate that S-Agents proficiently execute collaborative building tasks and resource collection in the Minecraft environment.
arXiv Detail & Related papers (2024-02-07T04:36:31Z) - Investigate-Consolidate-Exploit: A General Strategy for Inter-Task Agent
Self-Evolution [92.84441068115517]
Investigate-Consolidate-Exploit (ICE) is a novel strategy for enhancing the adaptability and flexibility of AI agents.
ICE promotes the transfer of knowledge between tasks for genuine self-evolution.
Our experiments on the XAgent framework demonstrate ICE's effectiveness, reducing API calls by as much as 80%.
arXiv Detail & Related papers (2024-01-25T07:47:49Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Hierarchical Reinforcement Learning with Opponent Modeling for
Distributed Multi-agent Cooperation [13.670618752160594]
Deep reinforcement learning (DRL) provides a promising approach for multi-agent cooperation through the interaction of the agents and environments.
Traditional DRL solutions suffer from the high dimensions of multiple agents with continuous action space during policy search.
We propose a hierarchical reinforcement learning approach with high-level decision-making and low-level individual control for efficient policy search.
arXiv Detail & Related papers (2022-06-25T19:09:29Z) - Scalable Multi-Agent Model-Based Reinforcement Learning [1.95804735329484]
We propose a new method called MAMBA which utilizes Model-Based Reinforcement Learning (MBRL) to further leverage centralized training in cooperative environments.
We argue that communication between agents is enough to sustain a world model for each agent during execution phase while imaginary rollouts can be used for training, removing the necessity to interact with the environment.
arXiv Detail & Related papers (2022-05-25T08:35:00Z) - Multi-agent Reinforcement Learning Improvement in a Dynamic Environment
Using Knowledge Transfer [0.0]
Cooperative multi-agent systems are widely used in different domains.
These systems are also a good option for handling large-scale, unknown, and dynamic environments.
However, learning in these environments has become a very important challenge in various applications.
arXiv Detail & Related papers (2021-07-20T23:42:39Z) - Adversarial Attacks On Multi-Agent Communication [80.4392160849506]
Modern autonomous systems will soon be deployed at scale, opening up the possibility for cooperative multi-agent systems.
Such advantages rely heavily on communication channels which have been shown to be vulnerable to security breaches.
In this paper, we explore such adversarial attacks in a novel multi-agent setting where agents communicate by sharing learned intermediate representations.
arXiv Detail & Related papers (2021-01-17T00:35:26Z) - Ubiquitous Distributed Deep Reinforcement Learning at the Edge:
Analyzing Byzantine Agents in Discrete Action Spaces [0.06554326244334865]
This paper discusses some of the challenges in multi-agent distributed deep reinforcement learning that can occur in the presence of byzantine or malfunctioning agents.
We show how wrong discrete actions can significantly affect the collaborative learning effort.
Experiments are carried out in a simulation environment using the Atari testbed for the discrete action spaces, and advantage actor-critic (A2C) for the distributed multi-agent training.
arXiv Detail & Related papers (2020-08-18T11:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.