Multivariate and Online Transfer Learning with Uncertainty Quantification
- URL: http://arxiv.org/abs/2411.12555v1
- Date: Tue, 19 Nov 2024 15:14:13 GMT
- Title: Multivariate and Online Transfer Learning with Uncertainty Quantification
- Authors: Jimmy Hickey, Jonathan P. Williams, Brian J. Reich, Emily C. Hector,
- Abstract summary: Untreated periodontitis causes inflammation within the supporting tissue of the teeth and can lead to tooth loss.
We propose an extension to RECaST Bayesian transfer learning framework.
Negative transfer is mitigated to ensure that the information shared from the other demographic groups does not negatively impact the modeling of the underrepresented participants.
- Score: 1.1588856557881027
- License:
- Abstract: Untreated periodontitis causes inflammation within the supporting tissue of the teeth and can ultimately lead to tooth loss. Modeling periodontal outcomes is beneficial as they are difficult and time consuming to measure, but disparities in representation between demographic groups must be considered. There may not be enough participants to build group specific models and it can be ineffective, and even dangerous, to apply a model to participants in an underrepresented group if demographic differences were not considered during training. We propose an extension to RECaST Bayesian transfer learning framework. Our method jointly models multivariate outcomes, exhibiting significant improvement over the previous univariate RECaST method. Further, we introduce an online approach to model sequential data sets. Negative transfer is mitigated to ensure that the information shared from the other demographic groups does not negatively impact the modeling of the underrepresented participants. The Bayesian framework naturally provides uncertainty quantification on predictions. Especially important in medical applications, our method does not share data between domains. We demonstrate the effectiveness of our method in both predictive performance and uncertainty quantification on simulated data and on a database of dental records from the HealthPartners Institute.
Related papers
- EPL: Evidential Prototype Learning for Semi-supervised Medical Image Segmentation [0.0]
We propose Evidential Prototype Learning (EPL) to fuse voxel probability predictions from different sources and prototype fusion utilization of labeled and unlabeled data.
The uncertainty not only enables the model to self-correct predictions but also improves the guided learning process with pseudo-labels and is able to feed back into the construction of hidden features.
arXiv Detail & Related papers (2024-04-09T10:04:06Z) - Counterfactual Data Augmentation with Contrastive Learning [27.28511396131235]
We introduce a model-agnostic data augmentation method that imputes the counterfactual outcomes for a selected subset of individuals.
We use contrastive learning to learn a representation space and a similarity measure such that in the learned representation space close individuals identified by the learned similarity measure have similar potential outcomes.
This property ensures reliable imputation of counterfactual outcomes for the individuals with close neighbors from the alternative treatment group.
arXiv Detail & Related papers (2023-11-07T00:36:51Z) - Domain-invariant Clinical Representation Learning by Bridging Data
Distribution Shift across EMR Datasets [16.317118701435742]
An effective prognostic model is expected to assist doctors in making right diagnosis and designing personalized treatment plan.
In the early stage of a disease, limited data collection and clinical experiences, plus the concern out of privacy and ethics, may result in restricted data availability for reference.
This article introduces a domain-invariant representation learning method to build a transition model from source dataset to target dataset.
arXiv Detail & Related papers (2023-10-11T18:32:21Z) - Causal Inference via Nonlinear Variable Decorrelation for Healthcare
Applications [60.26261850082012]
We introduce a novel method with a variable decorrelation regularizer to handle both linear and nonlinear confounding.
We employ association rules as new representations using association rule mining based on the original features to increase model interpretability.
arXiv Detail & Related papers (2022-09-29T17:44:14Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Lung Cancer Risk Estimation with Incomplete Data: A Joint Missing
Imputation Perspective [5.64530854079352]
We address imputation of missing data by modeling the joint distribution of multi-modal data.
Motivated by partial bidirectional generative adversarial net (PBiGAN), we propose a new Conditional PBiGAN (C-PBiGAN) method.
C-PBiGAN achieves significant improvements in lung cancer risk estimation compared with representative imputation methods.
arXiv Detail & Related papers (2021-07-25T20:15:16Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Mixture Model Framework for Traumatic Brain Injury Prognosis Using
Heterogeneous Clinical and Outcome Data [3.7363119896212478]
We develop a method for modeling large heterogeneous data types relevant to TBI.
The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings.
It is used to stratify patients into distinct groups in an unsupervised learning setting.
arXiv Detail & Related papers (2020-12-22T19:31:03Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
This work is focused on both the identification of risk factors and the prediction of healthcare-associated infections in intensive-care units.
The aim is to support decision making addressed at reducing the incidence rate of infections.
arXiv Detail & Related papers (2020-05-07T16:13:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.