論文の概要: Leadsee-Precip: A Deep Learning Diagnostic Model for Precipitation
- arxiv url: http://arxiv.org/abs/2411.12640v1
- Date: Tue, 19 Nov 2024 16:51:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:35:31.301698
- Title: Leadsee-Precip: A Deep Learning Diagnostic Model for Precipitation
- Title(参考訳): Leadsee-Precip: 降水の深層学習診断モデル
- Authors: Weiwen Ji, Jin Feng, Yueqi Liu, Yulu Qiu, Hua Gao,
- Abstract要約: 本稿では,気象循環場から降水を生成するための地球規模の深層学習モデルであるPedsee-Precipを提案する。
このモデルは、降水量予測の課題に取り組むために、情報バランススキームを利用する。
Leadsee-Precipの降水量は観測値とより一致しており、地球規模の数値天気予報モデルと競合する性能を示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Recently, deep-learning weather forecasting models have surpassed traditional numerical models in terms of the accuracy of meteorological variables. However, there is considerable potential for improvements in precipitation forecasts, especially for heavy precipitation events. To address this deficiency, we propose Leadsee-Precip, a global deep learning model to generate precipitation from meteorological circulation fields. The model utilizes an information balance scheme to tackle the challenges of predicting heavy precipitation caused by the long-tail distribution of precipitation data. Additionally, more accurate satellite and radar-based precipitation retrievals are used as training targets. Compared to artificial intelligence global weather models, the heavy precipitation from Leadsee-Precip is more consistent with observations and shows competitive performance against global numerical weather prediction models. Leadsee-Precip can be integrated with any global circulation model to generate precipitation forecasts. But the deviations between the predicted and the ground-truth circulation fields may lead to a weakened precipitation forecast, which could potentially be mitigated by further fine-tuning based on the predicted circulation fields.
- Abstract(参考訳): 近年,気象予測モデルが気象変数の精度で従来の数値モデルを上回っている。
しかし、降水量予測の改善、特に降水量の増加には大きな可能性がある。
この障害に対処するために,気象循環場から降水を生成するグローバルな深層学習モデルであるPedsee-Precipを提案する。
このモデルでは,降水量の長期分布による降水量の予測という課題に対処するために,情報バランス方式を採用している。
さらに、より正確な衛星とレーダーによる降水回収が訓練目標として使用される。
人工知能のグローバル気象モデルと比較すると、リードシー・プリープの降水量は観測結果と一致しており、グローバルな数値天気予報モデルと競合する性能を示している。
Leadsee-Precipは、どのグローバル循環モデルとも統合して降水予測を生成することができる。
しかし, 地中循環場と地中循環場とのずれは, 降雨予測の弱化につながる可能性があり, 予測された循環場に基づくさらなる微調整によって緩和される可能性がある。
関連論文リスト
- TCP-Diffusion: A Multi-modal Diffusion Model for Global Tropical Cyclone Precipitation Forecasting with Change Awareness [13.696784449863959]
熱帯サイクロン降水拡散 (TCP-Diffusion) は, 熱帯サイクロン降水量予測のマルチモーダルモデルである。
過去の降雨観測とマルチモーダル環境変数に基づいて,過去12時間のTCセンター周辺の降雨を3時間ごとの解像度で予測した。
気象要因の影響とNWPモデル予測からの有用性を考慮し,特殊エンコーダを用いたマルチモデルフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T02:58:05Z) - Leveraging data-driven weather models for improving numerical weather prediction skill through large-scale spectral nudging [1.747339718564314]
本研究は,気象予測に対する物理学的アプローチとAI的アプローチの相対的強みと弱みについて述べる。
GEM予測された大規模状態変数をGraphCast予測に対してスペクトル的に評価するハイブリッドNWP-AIシステムを提案する。
その結果,このハイブリッド手法は,GEMモデルの予測能力を高めるために,GraphCastの強みを活用できることが示唆された。
論文 参考訳(メタデータ) (2024-07-08T16:39:25Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
気象予報に拡散モデル(DM)を適用した新しい手法を提案する。
提案手法は,同一のモデリングフレームワークを用いて,直接予測と反復予測の両方を実現できる。
我々のモデルの柔軟性と制御性は、一般の気象コミュニティにとってより信頼性の高いDLシステムに力を与えます。
論文 参考訳(メタデータ) (2024-02-06T21:28:42Z) - CasCast: Skillful High-resolution Precipitation Nowcasting via Cascaded
Modelling [93.65319031345197]
本稿では,メソスケール降水分布と小規模パターンの予測を分離するために,決定的かつ確率的な部分からなるカスケードフレームワークCasCastを提案する。
CasCastは地域の極端降水量計のベースライン(+91.8%)をはるかに上回っている。
論文 参考訳(メタデータ) (2024-02-06T08:30:47Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Generative Modeling of High-resolution Global Precipitation Forecasts [2.1485350418225244]
GAN(Generative Adversarial Network)を用いた最先端の深層学習降水モデル(FourCastNet)のアーキテクチャとトレーニングプロセスの改善について述べる。
我々の改良は, 降水量の極端にパーセンタイルを捕捉する上で, 1~2日間のリードタイムでの予測能力において, 最先端のNWPモデルに匹敵する優れた性能を実現している。
論文 参考訳(メタデータ) (2022-10-22T17:21:16Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
本稿では,降水流の識別と注意の両方を含む新しい深層学習モデルを提案する。
このモデルは、レーダーデータと実際の雨データの両方を含む、新しく構築されたベンチマークデータセットで検討される。
論文 参考訳(メタデータ) (2021-02-16T14:22:54Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。