Regression for the Mean: Auto-Evaluation and Inference with Few Labels through Post-hoc Regression
- URL: http://arxiv.org/abs/2411.12665v2
- Date: Tue, 08 Jul 2025 16:05:09 GMT
- Title: Regression for the Mean: Auto-Evaluation and Inference with Few Labels through Post-hoc Regression
- Authors: Benjamin Eyre, David Madras,
- Abstract summary: The Prediction Powered Inference (PPI) framework provides a way of leveraging both a large pool of pseudo-labelled data and a small sample with real, high-quality labels.<n>We find that when labelled data is scarce, the PPI++ method can perform even worse than classical inference.<n>We present two new PPI-based techniques that leverage robust regressors to produce even lower variance estimators in the few-label regime.
- Score: 4.813376208491175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The availability of machine learning systems that can effectively perform arbitrary tasks has led to synthetic labels from these systems being used in applications of statistical inference, such as data analysis or model evaluation. The Prediction Powered Inference (PPI) framework provides a way of leveraging both a large pool of pseudo-labelled data and a small sample with real, high-quality labels to produce a low-variance, unbiased estimate of the quantity being evaluated for. Most work on PPI considers a relatively sizable set of labelled samples, which can be resource intensive to obtain. However, we find that when labelled data is scarce, the PPI++ method can perform even worse than classical inference. We analyze this phenomenon by relating PPI++ to ordinary least squares regression, which also experiences high variance with small sample sizes, and use this regression framework to better understand the efficacy of PPI. Motivated by this, we present two new PPI-based techniques that leverage robust regressors to produce even lower variance estimators in the few-label regime.
Related papers
- DUPRE: Data Utility Prediction for Efficient Data Valuation [49.60564885180563]
Cooperative game theory-based data valuation, such as Data Shapley, requires evaluating the data utility and retraining the ML model for multiple data subsets.<n>Our framework, textttDUPRE, takes an alternative yet complementary approach that reduces the cost per subset evaluation by predicting data utilities instead of evaluating them by model retraining.<n>Specifically, given the evaluated data utilities of some data subsets, textttDUPRE fits a emphGaussian process (GP) regression model to predict the utility of every other data subset.
arXiv Detail & Related papers (2025-02-22T08:53:39Z) - Prediction-Powered Adaptive Shrinkage Estimation [0.9208007322096532]
Prediction-Powered Adaptive Shrinkage (PAS) is a method that bridges PPI with empirical Bayes shrinkage to improve the estimation of multiple means.<n>PAS adapts to the reliability of the ML predictions and outperforms traditional and modern baselines in large-scale applications.
arXiv Detail & Related papers (2025-02-20T00:24:05Z) - Predictions as Surrogates: Revisiting Surrogate Outcomes in the Age of AI [12.569286058146343]
We establish a formal connection between the decades-old surrogate outcome model in biostatistics and the emerging field of prediction-powered inference (PPI)<n>We develop recalibrated prediction-powered inference, a more efficient approach to statistical inference than existing PPI proposals.<n>We demonstrate significant gains in effective sample size over existing PPI proposals via three applications leveraging state-of-the-art machine learning/AI models.
arXiv Detail & Related papers (2025-01-16T18:30:33Z) - Polyrating: A Cost-Effective and Bias-Aware Rating System for LLM Evaluation [5.653106385738822]
Polyrating is an expressive and flexible rating system based on a maximum posteriori estimation.
It can detect and quantify biases affecting human preferences, ensuring fairer model comparisons.
It can reduce the cost of human evaluations by up to $41%$ for new models and up to $77%$ for new tasks.
arXiv Detail & Related papers (2024-09-01T11:24:54Z) - Aligning Model Evaluations with Human Preferences: Mitigating Token Count Bias in Language Model Assessments [2.1370543868467275]
This follow-up paper explores methods to align Large Language Models evaluator preferences with human evaluations.
We employed Bayesian statistics and a t-test to quantify this bias and developed a recalibration procedure to adjust the GPTScorer.
Our findings significantly improve aligning the recalibrated LLM evaluator with human evaluations across multiple use cases.
arXiv Detail & Related papers (2024-07-05T09:26:40Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data.
We propose a method called Stratified Prediction-Powered Inference (StratPPI)
We show that the basic PPI estimates can be considerably improved by employing simple data stratification strategies.
arXiv Detail & Related papers (2024-06-06T17:37:39Z) - Bayesian Prediction-Powered Inference [62.2436697657307]
Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data.
We propose a framework for PPI based on Bayesian inference that allows researchers to develop new task-appropriate PPI methods easily.
arXiv Detail & Related papers (2024-05-09T18:08:58Z) - PPI++: Efficient Prediction-Powered Inference [31.403415618169433]
We present PPI++: a methodology for estimation and inference based on a small labeled dataset and a typically much larger dataset of machine-learning predictions.
The methods automatically adapt to the quality of available predictions, yielding easy-to-compute confidence sets.
PPI++ builds on prediction-powered inference (PPI), which targets the same problem setting, improving its computational and statistical efficiency.
arXiv Detail & Related papers (2023-11-02T17:59:04Z) - Learning Evaluation Models from Large Language Models for Sequence Generation [61.8421748792555]
We propose a three-stage evaluation model training method that utilizes large language models to generate labeled data for model-based metric development.
Experimental results on the SummEval benchmark demonstrate that CSEM can effectively train an evaluation model without human-labeled data.
arXiv Detail & Related papers (2023-08-08T16:41:16Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models [60.48306899271866]
We present a new framework, called GREAT Score, for global robustness evaluation of adversarial perturbation using generative models.
We show high correlation and significantly reduced cost of GREAT Score when compared to the attack-based model ranking on RobustBench.
GREAT Score can be used for remote auditing of privacy-sensitive black-box models.
arXiv Detail & Related papers (2023-04-19T14:58:27Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
We propose a Uncertainty-aware Inverse Propensity Score estimator (UIPS) for improved off-policy learning.
Experiment results on synthetic and three real-world recommendation datasets demonstrate the advantageous sample efficiency of the proposed UIPS estimator.
arXiv Detail & Related papers (2023-03-11T11:42:26Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Feature Likelihood Divergence: Evaluating the Generalization of
Generative Models Using Samples [25.657798631897908]
Feature Likelihood Divergence provides a comprehensive trichotomic evaluation of generative models.
We empirically demonstrate the ability of FLD to identify overfitting problem cases, even when previously proposed metrics fail.
arXiv Detail & Related papers (2023-02-09T04:57:27Z) - Low-Shot Validation: Active Importance Sampling for Estimating
Classifier Performance on Rare Categories [47.050853657721596]
For machine learning models trained with limited labeled training data, validation stands to become the main bottleneck to reducing overall annotation costs.
We propose a statistical validation algorithm that accurately estimates the F-score of binary classifiers for rare categories.
In particular, we can estimate model F1 scores with a variance of 0.005 using as few as 100 labels.
arXiv Detail & Related papers (2021-09-13T06:01:16Z) - SLOE: A Faster Method for Statistical Inference in High-Dimensional
Logistic Regression [68.66245730450915]
We develop an improved method for debiasing predictions and estimating frequentist uncertainty for practical datasets.
Our main contribution is SLOE, an estimator of the signal strength with convergence guarantees that reduces the computation time of estimation and inference by orders of magnitude.
arXiv Detail & Related papers (2021-03-23T17:48:56Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
We introduce a 3-dimensional evaluation metric that characterizes the fidelity, diversity and generalization performance of any generative model in a domain-agnostic fashion.
Our metric unifies statistical divergence measures with precision-recall analysis, enabling sample- and distribution-level diagnoses of model fidelity and diversity.
arXiv Detail & Related papers (2021-02-17T18:25:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.