論文の概要: Deep Learning-Driven Heat Map Analysis for Evaluating thickness of Wounded Skin Layers
- arxiv url: http://arxiv.org/abs/2411.12678v1
- Date: Tue, 19 Nov 2024 17:31:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:37:56.310862
- Title: Deep Learning-Driven Heat Map Analysis for Evaluating thickness of Wounded Skin Layers
- Title(参考訳): 深層学習による皮膚層厚評価のための熱マップ解析
- Authors: Devakumar GR, JB Kaarthikeyan, Dominic Immanuel T, Sheena Christabel Pravin,
- Abstract要約: 本稿では,皮膚層を分類し,熱マップ解析による創傷深度測定を支援する,深層学習の非侵襲的手法を提案する。
皮膚の約200枚のラベル付き画像は、傷、傷、健康な皮膚など5つの分類を区別することができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Understanding the appropriate skin layer thickness in wounded sites is an important tool to move forward on wound healing practices and treatment protocols. Methods to measure depth often are invasive and less specific. This paper introduces a novel method that is non-invasive with deep learning techniques using classifying of skin layers that helps in measurement of wound depth through heatmap analysis. A set of approximately 200 labeled images of skin allows five classes to be distinguished: scars, wounds, and healthy skin, among others. Each image has annotated key layers, namely the stratum cornetum, the epidermis, and the dermis, in the software Roboflow. In the preliminary stage, the Heatmap generator VGG16 was used to enhance the visibility of tissue layers, based upon which their annotated images were used to train ResNet18 with early stopping techniques. It ended up at a very high accuracy rate of 97.67%. To do this, the comparison of the models ResNet18, VGG16, DenseNet121, and EfficientNet has been done where both EfficientNet and ResNet18 have attained accuracy rates of almost 95.35%. For further hyperparameter tuning, EfficientNet and ResNet18 were trained at six different learning rates to determine the best model configuration. It has been noted that the accuracy has huge variations with different learning rates. In the case of EfficientNet, the maximum achievable accuracy was 95.35% at the rate of 0.0001. The same was true for ResNet18, which also attained its peak value of 95.35% at the same rate. These facts indicate that the model can be applied and utilized in actual-time, non-invasive wound assessment, which holds a great promise to improve clinical diagnosis and treatment planning.
- Abstract(参考訳): 創傷部位における適切な皮膚層厚を理解することは、創傷治癒の慣行や治療プロトコルを前進させる重要なツールである。
深さを測定する方法はしばしば侵襲的であり、具体的ではない。
本稿では,皮膚層を分類し,熱マップ解析による創傷深度測定を支援する,深層学習の非侵襲的手法を提案する。
皮膚の約200枚のラベル付き画像は、傷、傷、健康な皮膚など5つの分類を区別することができる。
それぞれの画像には、ソフトウェアRoboflowにある角膜層、表皮層、および皮層という注釈付きキー層がある。
予備段階では、Heatmap ジェネレータ VGG16 が組織層の可視性を高めるために使用され、アノテーション付き画像を使用してResNet18 を早期停止技術で訓練した。
精度は97.67%だった。
これを実現するために、ResNet18、VGG16、DenseNet121、EfficientNetの比較が行われ、EfficientNetとResNet18の両者が95.35%の精度を達成した。
さらなるハイパーパラメータチューニングのために、EfficientNetとResNet18は、最高のモデル構成を決定するために、6つの異なる学習速度でトレーニングされた。
精度は学習率によって大きく異なることが指摘されている。
EfficientNetの場合、最大達成可能な精度は0.0001で95.35%であった。
ResNet18も同様で、ピーク値は95.35%に達した。
これらの事実は、このモデルをリアルタイム非侵襲的創傷評価に適用し、活用できることを示し、臨床診断と治療計画の改善を大いに約束している。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Explainable Convolutional Neural Networks for Retinal Fundus Classification and Cutting-Edge Segmentation Models for Retinal Blood Vessels from Fundus Images [0.0]
眼底画像における網膜血管の検査による早期診断の重要領域に焦点を当てた研究。
基礎画像解析の研究は,8つの事前学習CNNモデルを用いたディープラーニングに基づく分類を進歩させる。
本研究では,Grad-CAM,Grad-CAM++,Score-CAM,Faster Score-CAM,Layer CAMなどの説明可能なAI技術を利用する。
論文 参考訳(メタデータ) (2024-05-12T17:21:57Z) - An edge detection-based deep learning approach for tear meniscus height measurement [20.311238180811404]
深層学習フレームワークにおけるエッジ検出支援アノテーションに基づく自動TMH計測手法を提案する。
瞳孔領域と裂孔領域のセグメンテーションを改善するために、畳み込みニューラルネットワークInceptionv3が最初に実装された。
このアルゴリズムは、その品質に基づいて画像を自動的にスクリーニングし、瞳孔と涙孔領域を分離し、TMHを自動的に測定する。
論文 参考訳(メタデータ) (2024-03-23T14:16:26Z) - DOMINO: Domain-aware Model Calibration in Medical Image Segmentation [51.346121016559024]
現代のディープニューラルネットワークはキャリブレーションが不十分で、信頼性と信頼性を損なう。
本稿では,クラスラベル間のセマンティック・コンフューザビリティと階層的類似性を利用したドメイン認識モデルキャリブレーション手法であるDOMINOを提案する。
その結果,DOMINOを校正したディープニューラルネットワークは,頭部画像分割における非校正モデルや最先端形態計測法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-13T15:31:52Z) - Core Risk Minimization using Salient ImageNet [53.616101711801484]
私たちは、1000のImagenetクラスのコアとスプリアス機能をローカライズする100万人以上のソフトマスクを備えたSalient Imagenetデータセットを紹介します。
このデータセットを用いて、まず、いくつかのImagenet事前訓練されたモデル(総計42件)の素早い特徴に対する依存度を評価する。
次に、コアリスク最小化(CoRM)と呼ばれる新しい学習パラダイムを導入する。
論文 参考訳(メタデータ) (2022-03-28T01:53:34Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - Vision Transformers for femur fracture classification [59.99241204074268]
Vision Transformer (ViT) はテスト画像の83%を正確に予測することができた。
史上最大かつ最もリッチなデータセットを持つサブフラクチャーで良い結果が得られた。
論文 参考訳(メタデータ) (2021-08-07T10:12:42Z) - Multiclass Burn Wound Image Classification Using Deep Convolutional
Neural Networks [0.0]
創傷専門家が管理プロトコルのより正確な診断と最適化を可能にするためには、継続的な創傷監視が重要です。
本研究では, 深層学習による傷傷画像の分類を, 傷の状況に応じて2、3つのカテゴリに分類する。
論文 参考訳(メタデータ) (2021-03-01T23:54:18Z) - Metastatic Cancer Image Classification Based On Deep Learning Method [7.832709940526033]
画像分類におけるディープラーニングアルゴリズム, DenseNet169 フレームワーク, Rectified Adam 最適化アルゴリズムを併用したNoval法を提案する。
我々のモデルは、Vgg19、Resnet34、Resnet50のような他の古典的畳み込みニューラルネットワークアプローチよりも優れた性能を実現する。
論文 参考訳(メタデータ) (2020-11-13T16:04:39Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
我々は,従来のトランスファー学習の改良にマルチソース・トランスファー・ラーニングを応用して,CTスキャンによる新型コロナウイルスの分類を提案する。
マルチソースファインチューニングアプローチでは、ImageNetで微調整されたベースラインモデルよりも優れています。
我々の最高のパフォーマンスモデルは、0.893の精度と0.897のリコールスコアを達成でき、ベースラインのリコールスコアを9.3%上回った。
論文 参考訳(メタデータ) (2020-09-22T11:53:06Z) - Investigating and Exploiting Image Resolution for Transfer
Learning-based Skin Lesion Classification [3.110738188734789]
CNNは皮膚病変の分類に有効であることが示されている。
本稿では,入力画像サイズが細調整CNNの皮膚病変分類性能に及ぼす影響について検討する。
以上の結果から,64×64ピクセルの非常に小さな画像を用いて分類性能を低下させる一方,128×128ピクセルの画像では画像サイズが大きくなり,分類精度がわずかに向上した。
論文 参考訳(メタデータ) (2020-06-25T21:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。