論文の概要: Barttender: An approachable & interpretable way to compare medical imaging and non-imaging data
- arxiv url: http://arxiv.org/abs/2411.12707v1
- Date: Tue, 19 Nov 2024 18:22:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-20 13:35:52.133313
- Title: Barttender: An approachable & interpretable way to compare medical imaging and non-imaging data
- Title(参考訳): Barttender:医療画像と非画像データの比較方法
- Authors: Ayush Singla, Shakson Isaac, Chirag J. Patel,
- Abstract要約: Barttenderは、画像の有効性と、病気の予測のようなタスクの非画像データの比較にディープラーニングを使用する解釈可能なフレームワークである。
本フレームワークでは,局所的な(サンプルレベルの)説明やグローバルな(人口レベルの)説明だけでなく,パフォーマンス測定による実用性の違いを評価することができる。
- 参考スコア(独自算出の注目度): 0.13406576408866772
- License:
- Abstract: Imaging-based deep learning has transformed healthcare research, yet its clinical adoption remains limited due to challenges in comparing imaging models with traditional non-imaging and tabular data. To bridge this gap, we introduce Barttender, an interpretable framework that uses deep learning for the direct comparison of the utility of imaging versus non-imaging tabular data for tasks like disease prediction. Barttender converts non-imaging tabular features, such as scalar data from electronic health records, into grayscale bars, facilitating an interpretable and scalable deep learning based modeling of both data modalities. Our framework allows researchers to evaluate differences in utility through performance measures, as well as local (sample-level) and global (population-level) explanations. We introduce a novel measure to define global feature importances for image-based deep learning models, which we call gIoU. Experiments on the CheXpert and MIMIC datasets with chest X-rays and scalar data from electronic health records show that Barttender performs comparably to traditional methods and offers enhanced explainability using deep learning models.
- Abstract(参考訳): 画像に基づくディープラーニングは医療研究に変化をもたらしたが、画像モデルと従来の非画像データと表計算データを比較することの難しさから、臨床応用は依然として限られている。
このギャップを埋めるために,病気の予測などのタスクにおいて,画像の有用性と非画像データとの直接比較にディープラーニングを利用する解釈可能なフレームワークであるBarttenderを紹介した。
Barttenderは、電子健康記録からのスカラーデータなどの非イメージの表層的特徴をグレースケールバーに変換することで、両方のデータモダリティの解釈可能でスケーラブルなディープラーニングベースのモデリングを容易にする。
本フレームワークでは,局所的な(サンプルレベルの)説明やグローバルな(人口レベルの)説明だけでなく,パフォーマンス測定による実用性の違いを評価することができる。
本稿では,gIoUと呼ばれる画像に基づくディープラーニングモデルにおいて,グローバルな特徴重要度を定義するための新しい尺度を提案する。
CheXpertとMIMICデータセットの胸部X線と電子健康記録からのスカラーデータによる実験により、Barttenderは従来の手法と互換性があり、ディープラーニングモデルを使用した説明可能性の向上が示されている。
関連論文リスト
- Self-supervised Visualisation of Medical Image Datasets [13.05427848112207]
自己教師付き学習法である$t$-SimCNEは、コントラスト学習を用いて、視覚化に適した2D表現を直接訓練する。
本研究では、皮膚科学、組織学、血液顕微鏡などの医療画像データセットの可視化に$t$-SimCNEを使用しました。
論文 参考訳(メタデータ) (2024-02-22T14:04:41Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Best of Both Worlds: Multimodal Contrastive Learning with Tabular and
Imaging Data [7.49320945341034]
単調エンコーダを学習するための自己指導型コントラスト学習フレームワークを提案する。
我々のソリューションは、2つの主要なコントラスト学習戦略であるSimCLRとSCARFを組み合わせています。
DVMカー広告データセットを用いて,自然画像へのアプローチの一般化可能性を示す。
論文 参考訳(メタデータ) (2023-03-24T15:44:42Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - Metadata-enhanced contrastive learning from retinal optical coherence tomography images [7.932410831191909]
従来のコントラストフレームワークを新しいメタデータ強化戦略で拡張する。
本手法では,画像間のコントラスト関係の真のセットを近似するために,患者メタデータを広く活用する。
提案手法は、6つの画像レベル下流タスクのうち5つにおいて、標準コントラスト法と網膜画像基盤モデルの両方に優れる。
論文 参考訳(メタデータ) (2022-08-04T08:53:15Z) - Lesion-based Contrastive Learning for Diabetic Retinopathy Grading from
Fundus Images [2.498907460918493]
糖尿病網膜症自動評価のための自己教師型フレームワーク,すなわち病変に基づくコントラスト学習を提案する。
提案フレームワークは,リニア評価と転送容量評価の両方の観点から,DRグレーディングを際立たせる。
論文 参考訳(メタデータ) (2021-07-17T16:30:30Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
多様な取得条件のデータを共通参照領域に"調和"する新しいパラダイムを提案する。
我々は,MRIによる脳年齢予測と統合失調症の分類という,2つの問題に対して本手法を検証した。
論文 参考訳(メタデータ) (2020-10-11T22:01:37Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。