Benchmarking Positional Encodings for GNNs and Graph Transformers
- URL: http://arxiv.org/abs/2411.12732v1
- Date: Tue, 19 Nov 2024 18:57:01 GMT
- Title: Benchmarking Positional Encodings for GNNs and Graph Transformers
- Authors: Florian Grötschla, Jiaqing Xie, Roger Wattenhofer,
- Abstract summary: We present a benchmark of Positional s (PEs) in a unified framework that includes both message-passing GNNs and GTs.
We also establish theoretical connections between MPNNs and GTs and introduce a sparsified GRIT attention mechanism to examine the influence of global connectivity.
- Score: 20.706469085872516
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent advances in Graph Neural Networks (GNNs) and Graph Transformers (GTs) have been driven by innovations in architectures and Positional Encodings (PEs), which are critical for augmenting node features and capturing graph topology. PEs are essential for GTs, where topological information would otherwise be lost without message-passing. However, PEs are often tested alongside novel architectures, making it difficult to isolate their effect on established models. To address this, we present a comprehensive benchmark of PEs in a unified framework that includes both message-passing GNNs and GTs. We also establish theoretical connections between MPNNs and GTs and introduce a sparsified GRIT attention mechanism to examine the influence of global connectivity. Our findings demonstrate that previously untested combinations of GNN architectures and PEs can outperform existing methods and offer a more comprehensive picture of the state-of-the-art. To support future research and experimentation in our framework, we make the code publicly available.
Related papers
- Scalable Message Passing Neural Networks: No Need for Attention in Large Graph Representation Learning [15.317501970096743]
We show that by integrating standard convolutional message passing into a Pre-Layer Normalization Transformer-style block instead of attention, we can produce high-performing deep message-passing-based Graph Neural Networks (GNNs)
Results are competitive with the state-of-the-art in large graph transductive learning, without requiring the otherwise computationally and memory-expensive attention mechanism.
arXiv Detail & Related papers (2024-10-29T17:18:43Z) - Learning Topological Representations with Bidirectional Graph Attention Network for Solving Job Shop Scheduling Problem [27.904195034688257]
Existing learning-based methods for solving job shop scheduling problems (JSSP) usually use off-the-shelf GNN models tailored to undirected graphs and neglect the rich and meaningful topological structures of disjunctive graphs (DGs)
This paper proposes the topology-aware bidirectional graph attention network (TBGAT) to embed the DG for solving JSSP in a local search framework.
arXiv Detail & Related papers (2024-02-27T15:33:20Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - HINormer: Representation Learning On Heterogeneous Information Networks
with Graph Transformer [29.217820912610602]
Graph Transformers (GTs) have been proposed which work in the paradigm that allows message passing to a larger coverage even across the whole graph.
The investigation of GTs on heterogeneous information networks (HINs) is still under-exploited.
We propose a novel model named HINormer, which capitalizes on a larger-range aggregation mechanism for node representation learning.
arXiv Detail & Related papers (2023-02-22T12:25:07Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
We present Gradient Gating (G$2$), a novel framework for improving the performance of Graph Neural Networks (GNNs)
Our framework is based on gating the output of GNN layers with a mechanism for multi-rate flow of message passing information across nodes of the underlying graph.
arXiv Detail & Related papers (2022-10-02T13:19:48Z) - MentorGNN: Deriving Curriculum for Pre-Training GNNs [61.97574489259085]
We propose an end-to-end model named MentorGNN that aims to supervise the pre-training process of GNNs across graphs.
We shed new light on the problem of domain adaption on relational data (i.e., graphs) by deriving a natural and interpretable upper bound on the generalization error of the pre-trained GNNs.
arXiv Detail & Related papers (2022-08-21T15:12:08Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Long Range Graph Benchmark [32.317725340138104]
MP-GNNs that simply rely on 1-hop message passing often fare better in several existing graph benchmarks.
We benchmark both baseline GNNs and Graph Transformer networks to verify that the models which capture long-range dependencies perform significantly better on these tasks.
arXiv Detail & Related papers (2022-06-16T13:33:22Z) - Graph Neural Networks with Learnable Structural and Positional
Representations [83.24058411666483]
A major issue with arbitrary graphs is the absence of canonical positional information of nodes.
We introduce Positional nodes (PE) of nodes, and inject it into the input layer, like in Transformers.
We observe a performance increase for molecular datasets, from 2.87% up to 64.14% when considering learnable PE for both GNN classes.
arXiv Detail & Related papers (2021-10-15T05:59:15Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.