Efficient Medicinal Image Transmission and Resolution Enhancement via GAN
- URL: http://arxiv.org/abs/2411.12833v1
- Date: Tue, 19 Nov 2024 19:39:42 GMT
- Title: Efficient Medicinal Image Transmission and Resolution Enhancement via GAN
- Authors: Rishabh Kumar Sharma, Mukund Sharma, Pushkar Sharma, Jeetashree Aparjeeta,
- Abstract summary: We present one efficient approach that improves the quality of an image with the optimization of network transmission.
Pre-processing of X-ray images into low-resolution files by Real-ESRGAN helps reduce the server load and transmission bandwidth.
Lower-resolution images are upscaled at the receiving end using Real-ESRGAN, fine-tuned for real-world image degradation.
- Score: 0.0
- License:
- Abstract: While X-ray imaging is indispensable in medical diagnostics, it inherently carries with it those noises and limitations on resolution that mask the details necessary for diagnosis. B/W X-ray images require a careful balance between noise suppression and high-detail preservation to ensure clarity in soft-tissue structures and bone edges. While traditional methods, such as CNNs and early super-resolution models like ESRGAN, have enhanced image resolution, they often perform poorly regarding high-frequency detail preservation and noise control for B/W imaging. We are going to present one efficient approach that improves the quality of an image with the optimization of network transmission in the following paper. The pre-processing of X-ray images into low-resolution files by Real-ESRGAN, a version of ESRGAN elucidated and improved, helps reduce the server load and transmission bandwidth. Lower-resolution images are upscaled at the receiving end using Real-ESRGAN, fine-tuned for real-world image degradation. The model integrates Residual-in-Residual Dense Blocks with perceptual and adversarial loss functions for high-quality upscaled images with low noise. We further fine-tune Real-ESRGAN by adapting it to the specific B/W noise and contrast characteristics. This suppresses noise artifacts without compromising detail. The comparative evaluation conducted shows that our approach achieves superior noise reduction and detail clarity compared to state-of-the-art CNN-based and ESRGAN models, apart from reducing network bandwidth requirements. These benefits are confirmed both by quantitative metrics, including Peak Signal-to-Noise Ratio and Structural Similarity Index, and by qualitative assessments, which indicate the potential of Real-ESRGAN for diagnostic-quality X-ray imaging and for efficient medical data transmission.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Enhanced Denoising of Optical Coherence Tomography Images Using Residual U-Net [0.0]
We propose an enhanced denoising model using a Residual U-Net architecture that effectively diminishes noise and improves image clarity.
Peak Signal Noise Ratio (PSNR) was 34.343 $pm$ 1.113 for PS OCT images, and Structural Similarity Index Measure (SSIM) values were 0.885 $pm$ 0.030.
arXiv Detail & Related papers (2024-07-18T01:35:03Z) - Ultrasound Image Enhancement using CycleGAN and Perceptual Loss [4.428854369140015]
This work introduces an advanced framework designed to enhance ultrasound images, especially those captured by portable hand-held devices.
We utilize an enhanced generative adversarial network (CycleGAN) model for ultrasound image enhancement across five organ systems.
arXiv Detail & Related papers (2023-12-18T23:21:00Z) - Unpaired Optical Coherence Tomography Angiography Image Super-Resolution
via Frequency-Aware Inverse-Consistency GAN [6.717440708401628]
We propose a Generative Adversarial Network (GAN)-based unpaired super-resolution method for OCTA images.
To facilitate a precise spectrum of the reconstructed image, we also propose a frequency-aware adversarial loss for the discriminator.
Experiments show that our method outperforms other state-of-the-art unpaired methods both quantitatively and visually.
arXiv Detail & Related papers (2023-09-29T14:19:51Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Fine-tuned Generative Adversarial Network-based Model for Medical Image Super-Resolution [2.647302105102753]
Real-Enhanced Super-Resolution Generative Adversarial Network (Real-ESRGAN) is a practical model for recovering HR images from real-world LR images.
We employ the high-order degradation model of the Real-ESRGAN which better simulates real-world image degradations.
The proposed model achieves superior perceptual quality compared to the Real-ESRGAN model, effectively preserving fine details and generating images with more realistic textures.
arXiv Detail & Related papers (2022-11-01T16:48:04Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Multimodal-Boost: Multimodal Medical Image Super-Resolution using
Multi-Attention Network with Wavelet Transform [5.416279158834623]
Loss of corresponding image resolution degrades the overall performance of medical image diagnosis.
Deep learning based single image super resolution (SISR) algorithms has revolutionized the overall diagnosis framework.
This work proposes generative adversarial network (GAN) with deep multi-attention modules to learn high-frequency information from low-frequency data.
arXiv Detail & Related papers (2021-10-22T10:13:46Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Perception Consistency Ultrasound Image Super-resolution via
Self-supervised CycleGAN [63.49373689654419]
We propose a new perception consistency ultrasound image super-resolution (SR) method based on self-supervision and cycle generative adversarial network (CycleGAN)
We first generate the HR fathers and the LR sons of the test ultrasound LR image through image enhancement.
We then make full use of the cycle loss of LR-SR-LR and HR-LR-SR and the adversarial characteristics of the discriminator to promote the generator to produce better perceptually consistent SR results.
arXiv Detail & Related papers (2020-12-28T08:24:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.