BS-LDM: Effective Bone Suppression in High-Resolution Chest X-Ray Images with Conditional Latent Diffusion Models
- URL: http://arxiv.org/abs/2412.15670v3
- Date: Mon, 30 Dec 2024 02:40:31 GMT
- Title: BS-LDM: Effective Bone Suppression in High-Resolution Chest X-Ray Images with Conditional Latent Diffusion Models
- Authors: Yifei Sun, Zhanghao Chen, Hao Zheng, Wenming Deng, Jin Liu, Wenwen Min, Ahmed Elazab, Xiang Wan, Changmiao Wang, Ruiquan Ge,
- Abstract summary: Lung diseases represent a significant global health challenge, with Chest X-Ray (CXR) being a key diagnostic tool.
The detection of pulmonary lesions is often hindered by overlapping bone structures in CXR images, leading to potential misdiagnoses.
We developed an end-to-end framework called BS-LDM, designed to effectively suppress bone in high-resolution CXR images.
- Score: 23.830681949520745
- License:
- Abstract: Lung diseases represent a significant global health challenge, with Chest X-Ray (CXR) being a key diagnostic tool due to their accessibility and affordability. Nonetheless, the detection of pulmonary lesions is often hindered by overlapping bone structures in CXR images, leading to potential misdiagnoses. To address this issue, we developed an end-to-end framework called BS-LDM, designed to effectively suppress bone in high-resolution CXR images. This framework is based on conditional latent diffusion models and incorporates a multi-level hybrid loss-constrained vector-quantized generative adversarial network which is crafted for perceptual compression, ensuring the preservation of details. To further enhance the framework's performance, we introduce offset noise and a temporal adaptive thresholding strategy. These additions help minimize discrepancies in generating low-frequency information, thereby improving the clarity of the generated soft tissue images. Additionally, we have compiled a high-quality bone suppression dataset named SZCH-X-Rays. This dataset includes 818 pairs of high-resolution CXR and dual-energy subtraction soft tissue images collected from a partner hospital. Moreover, we processed 241 data pairs from the JSRT dataset into negative images, which are more commonly used in clinical practice. Our comprehensive experimental and clinical evaluations reveal that BS-LDM excels in bone suppression, underscoring its significant clinical value.
Related papers
- Efficient Medicinal Image Transmission and Resolution Enhancement via GAN [0.0]
We present one efficient approach that improves the quality of an image with the optimization of network transmission.
Pre-processing of X-ray images into low-resolution files by Real-ESRGAN helps reduce the server load and transmission bandwidth.
Lower-resolution images are upscaled at the receiving end using Real-ESRGAN, fine-tuned for real-world image degradation.
arXiv Detail & Related papers (2024-11-19T19:39:42Z) - BLS-GAN: A Deep Layer Separation Framework for Eliminating Bone Overlap in Conventional Radiographs [4.295284976294471]
In conventional radiographs, bone overlaps are prevalent, and can impede the accurate assessment of bone characteristics.
This work proposed a Bone Layer Separation GAN framework that can produce high-quality bone layer images.
The generated images passed the visual Turing test, and improved performance in downstream tasks.
arXiv Detail & Related papers (2024-09-11T14:34:17Z) - BS-Diff: Effective Bone Suppression Using Conditional Diffusion Models
from Chest X-Ray Images [21.19843479423806]
Chest X-rays (CXRs) are commonly utilized as a low-dose modality for lung screening.
Approximately 75% of the lung area overlaps with bone, which in turn hampers the detection and diagnosis of diseases.
Bone suppression techniques have been introduced, but the current dual-energy subtraction imaging technique in the clinic requires costly equipment and subjects being exposed to high radiation.
This paper proposes a new bone suppression framework, termed BS-Diff, that comprises a conditional diffusion model equipped with a U-Net architecture and a simple enhancement module to incorporate an autoencoder.
arXiv Detail & Related papers (2023-11-26T15:13:13Z) - Feature-oriented Deep Learning Framework for Pulmonary Cone-beam CT
(CBCT) Enhancement with Multi-task Customized Perceptual Loss [9.59233136691378]
Cone-beam computed tomography (CBCT) is routinely collected during image-guided radiation therapy.
Recent deep learning-based CBCT enhancement methods have shown promising results in suppressing artifacts.
We propose a novel feature-oriented deep learning framework that translates low-quality CBCT images into high-quality CT-like imaging.
arXiv Detail & Related papers (2023-11-01T10:09:01Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - A bone suppression model ensemble to improve COVID-19 detection in chest
X-rays [0.6999740786886535]
We propose to build an ensemble of convolutional neural network models to suppress bones in frontal Chest X-ray images.
It is observed that the bone suppression model ensemble outperformed the individual models in terms of MS-SSIM and other metrics.
A CXR modality-specific classification model is retrained and evaluated on the non-bone-suppressed and bone-suppressed images to classify them as showing normal lungs or other COVID-19-like manifestations.
arXiv Detail & Related papers (2021-11-05T11:27:26Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.