論文の概要: The Game-Theoretic Symbiosis of Trust and AI in Networked Systems
- arxiv url: http://arxiv.org/abs/2411.12859v1
- Date: Tue, 19 Nov 2024 21:04:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:12:31.618550
- Title: The Game-Theoretic Symbiosis of Trust and AI in Networked Systems
- Title(参考訳): ネットワークシステムにおける信頼とAIのゲーム理論共生
- Authors: Yunfei Ge, Quanyan Zhu,
- Abstract要約: この章では、人工知能(AI)とネットワークシステムにおける信頼の共生関係について論じる。
我々は、AIによって動的に管理される信頼が、いかにレジリエントなセキュリティエコシステムを形成するかを検討する。
- 参考スコア(独自算出の注目度): 13.343937277604892
- License:
- Abstract: This chapter explores the symbiotic relationship between Artificial Intelligence (AI) and trust in networked systems, focusing on how these two elements reinforce each other in strategic cybersecurity contexts. AI's capabilities in data processing, learning, and real-time response offer unprecedented support for managing trust in dynamic, complex networks. However, the successful integration of AI also hinges on the trustworthiness of AI systems themselves. Using a game-theoretic framework, this chapter presents approaches to trust evaluation, the strategic role of AI in cybersecurity, and governance frameworks that ensure responsible AI deployment. We investigate how trust, when dynamically managed through AI, can form a resilient security ecosystem. By examining trust as both an AI output and an AI requirement, this chapter sets the foundation for a positive feedback loop where AI enhances network security and the trust placed in AI systems fosters their adoption.
- Abstract(参考訳): この章では、人工知能(AI)とネットワークシステムに対する信頼の共生関係について論じ、これらの2つの要素が戦略的サイバーセキュリティの文脈においてどのように相互に強化されるかに焦点を当てる。
データ処理、学習、リアルタイム応答におけるAIの能力は、動的で複雑なネットワークにおける信頼を管理するための前例のないサポートを提供する。
しかし、AIの統合が成功したことは、AIシステム自体の信頼性にも影響している。
ゲーム理論のフレームワークを使用して、この章では、信頼評価のアプローチ、サイバーセキュリティにおけるAIの戦略的役割、AIデプロイメントの責任を負うためのガバナンスフレームワークについて紹介する。
我々は、AIによって動的に管理される信頼が、いかにレジリエントなセキュリティエコシステムを形成するかを検討する。
この章では、信頼をAI出力とAI要件の両方として検討することにより、AIがネットワークセキュリティを強化し、AIシステムに置かれる信頼が採用を促進する、肯定的なフィードバックループの基礎を定めている。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - A Red Teaming Framework for Securing AI in Maritime Autonomous Systems [0.0]
海上自律システムのAIセキュリティを評価するための,最初のレッドチームフレームワークを提案する。
このフレームワークはマルチパートのチェックリストであり、異なるシステムや要件に合わせて調整できる。
私たちはこのフレームワークが、現実の海上自律システムAI内の多数の脆弱性を明らかにするために、レッドチームにとって非常に効果的であることを実証しています。
論文 参考訳(メタデータ) (2023-12-08T14:59:07Z) - AI Potentiality and Awareness: A Position Paper from the Perspective of
Human-AI Teaming in Cybersecurity [18.324118502535775]
我々は、人間とAIのコラボレーションはサイバーセキュリティに価値があると論じている。
私たちは、AIの計算能力と人間の専門知識を取り入れたバランスのとれたアプローチの重要性を強調します。
論文 参考訳(メタデータ) (2023-09-28T01:20:44Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
我々はAIベースのシステムのコンテキストにおける信頼を検証し、AIシステムが信頼に値するものとなることの意味を理解する。
我々は、AIに対する信頼(resp. zero-trust)モデルを提案し、AIシステムの信頼性を保証するために満足すべき特性のセットを提案する。
論文 参考訳(メタデータ) (2022-06-23T21:13:10Z) - Designing for Responsible Trust in AI Systems: A Communication
Perspective [56.80107647520364]
我々は、MATCHと呼ばれる概念モデルを開発するために、技術に対する信頼に関するコミュニケーション理論と文献から引き出す。
私たちは、AIシステムの能力として透明性とインタラクションを強調します。
我々は、技術クリエーターが使用する適切な方法を特定するのに役立つ要件のチェックリストを提案する。
論文 参考訳(メタデータ) (2022-04-29T00:14:33Z) - Confident AI [0.0]
本稿では,人工知能(AI)と機械学習(ML)システムを,モデル予測と報告結果に対するアルゴリズムとユーザ信頼性の両方で設計する手段として,信頼AIを提案する。
Confident AIの4つの基本原則は、反復性、信頼性、十分性、適応性である。
論文 参考訳(メタデータ) (2022-02-12T02:26:46Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: From Principles to Practices [44.67324097900778]
多くの現在のAIシステムは、認識不能な攻撃に脆弱で、表現不足なグループに偏り、ユーザのプライバシ保護が欠如していることが判明した。
このレビューでは、信頼できるAIシステムを構築するための包括的なガイドとして、AI実践者に提供したいと思っています。
信頼に値するAIに対する現在の断片化されたアプローチを統合するために、AIシステムのライフサイクル全体を考慮した体系的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-04T03:20:39Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。