Machine learned reconstruction of tsunami dynamics from sparse observations
- URL: http://arxiv.org/abs/2411.12948v2
- Date: Sat, 23 Nov 2024 18:43:27 GMT
- Title: Machine learned reconstruction of tsunami dynamics from sparse observations
- Authors: Edward McDugald, Arvind Mohan, Darren Engwirda, Agnese Marcato, Javier Santos,
- Abstract summary: We use a transformer neural network designed for sparse sensing applications to estimate full-field surface height measurements of tsunami waves.
We train the model on a dataset consisting of 8 tsunami simulations whose epicenters correspond to historical USGS earthquake records.
The results show remarkable resolution of fine scale phase and amplitude features from the true field, provided that at least a few of the sensors have obtained a non-zero signal.
- Score: 0.0
- License:
- Abstract: We investigate the use of the Senseiver, a transformer neural network designed for sparse sensing applications, to estimate full-field surface height measurements of tsunami waves from sparse observations. The model is trained on a large ensemble of simulated data generated via a shallow water equations solver, which we show to be a faithful reproduction for the underlying dynamics by comparison to historical events. We train the model on a dataset consisting of 8 tsunami simulations whose epicenters correspond to historical USGS earthquake records, and where the model inputs are restricted to measurements obtained at actively deployed buoy locations. We test the Senseiver on a dataset consisting of 8 simulations not included in training, demonstrating its capability for extrapolation. The results show remarkable resolution of fine scale phase and amplitude features from the true field, provided that at least a few of the sensors have obtained a non-zero signal. Throughout, we discuss which forecasting techniques can be improved by this method, and suggest ways in which the flexibility of the architecture can be leveraged to incorporate arbitrary remote sensing data (eg. HF Radar and satellite measurements) as well as investigate optimal sensor placements.
Related papers
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - SimuShips -- A High Resolution Simulation Dataset for Ship Detection
with Precise Annotations [0.0]
State-of-the-art obstacle detection algorithms are based on convolutional neural networks (CNNs)
SimuShips is a publicly available simulation-based dataset for maritime environments.
arXiv Detail & Related papers (2022-09-22T07:33:31Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Model discovery in the sparse sampling regime [0.0]
We show how deep learning can improve model discovery of partial differential equations.
As a result, deep learning-based model discovery allows to recover the underlying equations.
We illustrate our claims on both synthetic and experimental sets.
arXiv Detail & Related papers (2021-05-02T06:27:05Z) - There and Back Again: Learning to Simulate Radar Data for Real-World
Applications [21.995474023869388]
We learn a radar sensor model capable of synthesising faithful radar observations based on simulated elevation maps.
We adopt an adversarial approach to learning a forward sensor model from unaligned radar examples.
We demonstrate the efficacy of our approach by evaluating a down-stream segmentation model trained purely on simulated data in a real-world deployment.
arXiv Detail & Related papers (2020-11-29T15:49:23Z) - Augmented Sliced Wasserstein Distances [55.028065567756066]
We propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs)
ASWDs are constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks.
Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.
arXiv Detail & Related papers (2020-06-15T23:00:08Z) - Breaking the Limits of Remote Sensing by Simulation and Deep Learning
for Flood and Debris Flow Mapping [13.167695669500391]
We propose a framework that estimates inundation depth and debris-flow-induced topographic deformation from remote sensing imagery.
A water and debris flow simulator generates training data for various artificial disaster scenarios.
We show that regression models based on Attention U-Net and LinkNet architectures trained on such synthetic data can predict the maximum water level and topographic deformation.
arXiv Detail & Related papers (2020-06-09T10:59:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.