Current noise in quantum dot thermoelectric engines
- URL: http://arxiv.org/abs/2411.13408v1
- Date: Wed, 20 Nov 2024 15:47:09 GMT
- Title: Current noise in quantum dot thermoelectric engines
- Authors: Simon Wozny, Martin Leijnse,
- Abstract summary: We theoretically investigate a thermoelectric heat engine based on a single-level quantum dot.
We investigate the effects of strong interactions and next-to-leading order tunneling.
- Score: 0.0
- License:
- Abstract: We theoretically investigate a thermoelectric heat engine based on a single-level quantum dot, calculating average quantities such as current, heat current, output power, and efficiency, as well as fluctuations (noise). Our theory is based on a diagrammatic expansion of the memory kernel together with counting statistics, and we investigate the effects of strong interactions and next-to-leading order tunneling. Accounting for next-to-leading order tunneling is crucial for a correct description when operating at high power and high efficiency, and in particular affect the qualitative behavior of the Fano factor and efficiency. We compare our results with the so-called thermodynamic uncertainty relations, which provide a lower bound on the fluctuations for a given efficiency. In principle, the conventional thermodynamic uncertainty relations can be violated by the non-Markovian quantum effects originating from next-to-leading order tunneling, providing a type of quantum advantage. However, for the specific heat engine realization we consider here, we find that next-to-leading order tunneling does not lead to such violations, but in fact always pushes the results further away from the bound set by the thermodynamic uncertainty relations.
Related papers
- Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Thermodynamics and Fluctuations in Quantum Heat Engines under Reservoir
Squeezing [7.109424824240926]
We show that reservoir squeezing significantly enhances the performance by increasing the thermodynamic efficiency and the power.
An experimental scheme for realizing this quantum heat engine is proposed using a single-electron spin pertaining to a trapped 40Ca$+$ ion.
arXiv Detail & Related papers (2022-09-13T11:15:31Z) - Thermodynamic Constraints on Quantum Information Gain and Error
Correction: A Triple Trade-Off [6.499706858965409]
Quantum error correction (QEC) is a procedure by which the quantum state of a system is protected against a known type of noise.
thermal noise has also been known to play a central role in quantum thermodynamics.
arXiv Detail & Related papers (2021-12-09T18:39:44Z) - The quantum Otto cycle in a superconducting cavity in the non-adiabatic
regime [62.997667081978825]
We analyze the efficiency of the quantum Otto cycle applied to a superconducting cavity.
It is shown that, in a non-adiabatic regime, the efficiency of the quantum cycle is affected by the dynamical Casimir effect.
arXiv Detail & Related papers (2021-11-30T11:47:33Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Violating the Thermodynamic Uncertainty Relation in the Three-Level
Maser [0.0]
The Thermodynamic Uncertainty Relation (TUR) provides a trade-off between output power, fluctuations and entropic cost.
This letter provides a study of the TUR in a prototypical quantum heat engine, the Scovil & Schulz-DuBois maser.
arXiv Detail & Related papers (2021-03-13T21:02:46Z) - Coherences and the thermodynamic uncertainty relation: Insights from
quantum absorption refrigerators [6.211723927647019]
We examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime.
Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
arXiv Detail & Related papers (2020-11-30T03:15:27Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Thermodynamic uncertainty relation in slowly driven quantum heat engines [0.0]
We show that an alternative TUR is satisfied, which is less restrictive than that of steady-state engines.
We illustrate our findings in the experimentally relevant model of a single-ion heat engine.
arXiv Detail & Related papers (2020-06-12T16:55:05Z) - Thermoelectricity in Quantum-Hall Corbino Structures [48.7576911714538]
We measure the thermoelectric response of Corbino structures in the quantum Hall effect regime.
We predict a figure of merit for the efficiency of thermoelectric cooling which becomes very large for partially filled Landau levels.
arXiv Detail & Related papers (2020-03-03T19:19:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.