論文の概要: Conformalized Late Fusion Multi-View Learning
- arxiv url: http://arxiv.org/abs/2405.16246v1
- Date: Sat, 25 May 2024 14:11:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-28 22:17:06.219833
- Title: Conformalized Late Fusion Multi-View Learning
- Title(参考訳): Conformalized Late Fusion Multi-View Learning
- Authors: Eduardo Ochoa Rivera, Yash Patel, Ambuj Tewari,
- Abstract要約: 多視点学習の不確かさの定量化は、科学的な問題における多視点データの利用の増加によって動機づけられる。
個別のビューで個別の予測器を訓練し、単一のビュー予測が利用可能になった後にそれらを組み合わせます。
本稿では,共形予測を単一ビュー予測器上で個別に行う手法として,MVCP(Multi-View Conformal Prediction)を提案する。
- 参考スコア(独自算出の注目度): 18.928543069018865
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertainty quantification for multi-view learning is motivated by the increasing use of multi-view data in scientific problems. A common variant of multi-view learning is late fusion: train separate predictors on individual views and combine them after single-view predictions are available. Existing methods for uncertainty quantification for late fusion often rely on undesirable distributional assumptions for validity. Conformal prediction is one approach that avoids such distributional assumptions. However, naively applying conformal prediction to late-stage fusion pipelines often produces overly conservative and uninformative prediction regions, limiting its downstream utility. We propose a novel methodology, Multi-View Conformal Prediction (MVCP), where conformal prediction is instead performed separately on the single-view predictors and only fused subsequently. Our framework extends the standard scalar formulation of a score function to a multivariate score that produces more efficient downstream prediction regions in both classification and regression settings. We then demonstrate that such improvements can be realized in methods built atop conformalized regressors, specifically in robust predict-then-optimize pipelines.
- Abstract(参考訳): 多視点学習の不確かさの定量化は、科学的な問題における多視点データの利用の増加によって動機づけられる。
個別のビューで個別の予測器を訓練し、単一のビュー予測が利用可能になった後にそれらを組み合わせます。
後期核融合における既存の不確実性定量化の方法は、しばしば有効性に対する望ましくない分布仮定に依存する。
等角予測はそのような分布仮定を避ける方法の1つである。
しかし、後期核融合パイプラインに因果予測を適用すると、過度に保守的で非形式的な予測領域が生成され、下流のユーティリティが制限される。
本稿では,共形予測を単一ビュー予測器上で個別に行う手法として,MVCP(Multi-View Conformal Prediction)を提案する。
本フレームワークは、スコア関数の標準スカラー定式化を多変量スコアに拡張し、分類と回帰設定の両方においてより効率的な下流予測領域を生成する。
次に、整合化された回帰器上に構築された手法、特に堅牢な予測列最適化パイプラインにおいて、このような改善が実現可能であることを実証する。
関連論文リスト
- Epistemic Uncertainty in Conformal Scores: A Unified Approach [2.449909275410288]
等角予測法は、分布のない保証を持つ予測帯域を生成するが、不確実性を明示的に捉えることはできない。
モデルに依存しないアプローチである $texttEPICSCORE$ を導入する。
$texttEPICSCORE$は、限られたデータを持つ領域の予測間隔を適応的に拡張し、データが豊富であるコンパクト間隔を維持します。
論文 参考訳(メタデータ) (2025-02-10T19:42:54Z) - Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
有限サンプルにおいて、正確に分布のない条件付きカバレッジを達成することは不可能である。
本稿では,最も重要となる範囲を対象とするコンフォメーション予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2025-01-17T12:01:56Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
実際のデータストリームは、分散シフトやフィードバックループ、敵アクターによって予測不可能に変化する可能性がある。
データがどのように進化するかに関わらず、有効な不確実性推定を保証するための予測フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T21:46:42Z) - Weighted Aggregation of Conformity Scores for Classification [9.559062601251464]
コンフォーマル予測は、有効なカバレッジ保証を備えた予測セットを構築するための強力なフレームワークである。
本稿では,共形予測器の性能向上のために,複数のスコア関数を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-14T14:58:03Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Distribution-Free Finite-Sample Guarantees and Split Conformal
Prediction [0.0]
分割共形予測は、最小分布自由仮定の下で有限サンプル保証を得るための有望な道を表す。
1940年代に開発された分割共形予測と古典的寛容予測との関連性を強調した。
論文 参考訳(メタデータ) (2022-10-26T14:12:24Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
本稿では,特徴空間への共形予測の範囲を拡大する特徴共形予測を提案する。
理論的観点からは、特徴共形予測は軽度の仮定の下で正則共形予測よりも確実に優れていることを示す。
提案手法は,バニラ共形予測だけでなく,他の適応共形予測手法と組み合わせることができる。
論文 参考訳(メタデータ) (2022-10-01T02:57:37Z) - Distributional Gradient Boosting Machines [77.34726150561087]
私たちのフレームワークはXGBoostとLightGBMをベースにしています。
我々は,このフレームワークが最先端の予測精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-02T06:32:19Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
本稿では,複数の学習可能なパラメータに対する共形予測の一般化を提案する。
本研究は, クラス内において, ほぼ有効な人口被覆率, ほぼ最適効率を実現していることを示す。
実験の結果,提案アルゴリズムは有効な予測セットを学習し,効率を著しく向上できることがわかった。
論文 参考訳(メタデータ) (2022-02-22T18:37:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。