Metacognition for Unknown Situations and Environments (MUSE)
- URL: http://arxiv.org/abs/2411.13537v1
- Date: Wed, 20 Nov 2024 18:41:03 GMT
- Title: Metacognition for Unknown Situations and Environments (MUSE)
- Authors: Rodolfo Valiente, Praveen K. Pilly,
- Abstract summary: We propose the Metacognition for Unknown Situations and Environments (MUSE) framework.
MUSE integrates metacognitive processes--specifically self-awareness and self-regulation--into autonomous agents.
Agents show significant improvements in self-awareness and self-regulation.
- Score: 3.2020845462590697
- License:
- Abstract: Metacognition--the awareness and regulation of one's cognitive processes--is central to human adaptability in unknown situations. In contrast, current autonomous agents often struggle in novel environments due to their limited capacity for adaptation. We hypothesize that metacognition is a critical missing ingredient in adaptive autonomous systems, equipping them with the cognitive flexibility needed to tackle unfamiliar challenges. Given the broad scope of metacognitive abilities, we focus on two key aspects: competence awareness and strategy selection for novel tasks. To this end, we propose the Metacognition for Unknown Situations and Environments (MUSE) framework, which integrates metacognitive processes--specifically self-awareness and self-regulation--into autonomous agents. We present two initial implementations of MUSE: one based on world modeling and another leveraging large language models (LLMs), both instantiating the metacognitive cycle. Our system continuously learns to assess its competence on a given task and uses this self-awareness to guide iterative cycles of strategy selection. MUSE agents show significant improvements in self-awareness and self-regulation, enabling them to solve novel, out-of-distribution tasks more effectively compared to Dreamer-v3-based reinforcement learning and purely prompt-based LLM agent approaches. This work highlights the promise of approaches inspired by cognitive and neural systems in enabling autonomous systems to adapt to new environments, overcoming the limitations of current methods that rely heavily on extensive training data.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - BloomWise: Enhancing Problem-Solving capabilities of Large Language Models using Bloom's-Taxonomy-Inspired Prompts [59.83547898874152]
We introduce BloomWise, a new prompting technique, inspired by Bloom's taxonomy, to improve the performance of Large Language Models (LLMs)
The decision regarding the need to employ more sophisticated cognitive skills is based on self-evaluation performed by the LLM.
In extensive experiments across 4 popular math reasoning datasets, we have demonstrated the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-10-05T09:27:52Z) - CogniDual Framework: Self-Training Large Language Models within a Dual-System Theoretical Framework for Improving Cognitive Tasks [39.43278448546028]
Kahneman's dual-system theory elucidates the human decision-making process, distinguishing between the rapid, intuitive System 1 and the deliberative, rational System 2.
Recent advancements have positioned large language Models (LLMs) as formidable tools nearing human-level proficiency in various cognitive tasks.
This study introduces the textbfCogniDual Framework for LLMs (CFLLMs), designed to assess whether LLMs can, through self-training, evolve from deliberate deduction to intuitive responses.
arXiv Detail & Related papers (2024-09-05T09:33:24Z) - I Know How: Combining Prior Policies to Solve New Tasks [17.214443593424498]
Multi-Task Reinforcement Learning aims at developing agents that are able to continually evolve and adapt to new scenarios.
Learning from scratch for each new task is not a viable or sustainable option.
We propose a new framework, I Know How, which provides a common formalization.
arXiv Detail & Related papers (2024-06-14T08:44:51Z) - Ontology-Enhanced Decision-Making for Autonomous Agents in Dynamic and Partially Observable Environments [0.0]
This thesis introduces an ontology-enhanced decision-making model (OntoDeM) for autonomous agents.
OntoDeM enriches agents' domain knowledge, allowing them to interpret unforeseen events, generate or adapt goals, and make better decisions.
Compared to traditional and advanced learning algorithms, OntoDeM shows superior performance in improving agents' observations and decision-making in dynamic, partially observable environments.
arXiv Detail & Related papers (2024-05-27T22:52:23Z) - Tuning-Free Accountable Intervention for LLM Deployment -- A
Metacognitive Approach [55.613461060997004]
Large Language Models (LLMs) have catalyzed transformative advances across a spectrum of natural language processing tasks.
We propose an innovative textitmetacognitive approach, dubbed textbfCLEAR, to equip LLMs with capabilities for self-aware error identification and correction.
arXiv Detail & Related papers (2024-03-08T19:18:53Z) - Metacognition is all you need? Using Introspection in Generative Agents
to Improve Goal-directed Behavior [0.0]
We introduce a metacognition module for generative agents, enabling them to observe their own thought processes and actions.
We tested the metacognition module on a variety of scenarios, including a situation where generative agents must survive a zombie apocalypse.
arXiv Detail & Related papers (2024-01-09T15:00:47Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
Intrinsic motivations have proven to generate a task-agnostic signal to properly allocate the training time amongst goals.
While the majority of works in the field of intrinsically motivated open-ended learning focus on scenarios where goals are independent from each other, only few of them studied the autonomous acquisition of interdependent tasks.
In particular, we first deepen the analysis of a previous system, showing the importance of incorporating information about the relationships between tasks at a higher level of the architecture.
Then we introduce H-GRAIL, a new system that extends the previous one by adding a new learning layer to store the autonomously acquired sequences
arXiv Detail & Related papers (2022-05-16T10:43:01Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.