CogniDual Framework: Self-Training Large Language Models within a Dual-System Theoretical Framework for Improving Cognitive Tasks
- URL: http://arxiv.org/abs/2409.03381v2
- Date: Fri, 6 Sep 2024 09:37:36 GMT
- Title: CogniDual Framework: Self-Training Large Language Models within a Dual-System Theoretical Framework for Improving Cognitive Tasks
- Authors: Yongxin Deng, Xihe Qiu, Xiaoyu Tan, Chao Qu, Jing Pan, Yuan Cheng, Yinghui Xu, Wei Chu,
- Abstract summary: Kahneman's dual-system theory elucidates the human decision-making process, distinguishing between the rapid, intuitive System 1 and the deliberative, rational System 2.
Recent advancements have positioned large language Models (LLMs) as formidable tools nearing human-level proficiency in various cognitive tasks.
This study introduces the textbfCogniDual Framework for LLMs (CFLLMs), designed to assess whether LLMs can, through self-training, evolve from deliberate deduction to intuitive responses.
- Score: 39.43278448546028
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitive psychology investigates perception, attention, memory, language, problem-solving, decision-making, and reasoning. Kahneman's dual-system theory elucidates the human decision-making process, distinguishing between the rapid, intuitive System 1 and the deliberative, rational System 2. Recent advancements have positioned large language Models (LLMs) as formidable tools nearing human-level proficiency in various cognitive tasks. Nonetheless, the presence of a dual-system framework analogous to human cognition in LLMs remains unexplored. This study introduces the \textbf{CogniDual Framework for LLMs} (CFLLMs), designed to assess whether LLMs can, through self-training, evolve from deliberate deduction to intuitive responses, thereby emulating the human process of acquiring and mastering new information. Our findings reveal the cognitive mechanisms behind LLMs' response generation, enhancing our understanding of their capabilities in cognitive psychology. Practically, self-trained models can provide faster responses to certain queries, reducing computational demands during inference.
Related papers
- Metacognition for Unknown Situations and Environments (MUSE) [3.2020845462590697]
We propose the Metacognition for Unknown Situations and Environments (MUSE) framework.
MUSE integrates metacognitive processes--specifically self-awareness and self-regulation--into autonomous agents.
Agents show significant improvements in self-awareness and self-regulation.
arXiv Detail & Related papers (2024-11-20T18:41:03Z) - Roles of LLMs in the Overall Mental Architecture [0.32634122554913997]
We may examine the human mental (cognitive/psychological) architecture, and its components and structures.
It is argued that, within the human mental architecture, existing LLMs correspond well with implicit mental processes.
arXiv Detail & Related papers (2024-10-26T01:13:44Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Psychomatics -- A Multidisciplinary Framework for Understanding Artificial Minds [0.319565400223685]
This paper introduces Psychomatics, a framework bridging cognitive science, linguistics, and computer science.
It aims to better understand the high-level functioning of LLMs.
Psychomatics holds the potential to yield transformative insights into the nature of language, cognition, and intelligence.
arXiv Detail & Related papers (2024-07-23T12:53:41Z) - Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
Large Language Models (LLMs) have demonstrated their capabilities across various tasks.
This paper exploits the reasoning and generative capabilities of the LLMs to predict human behavior in two sequential decision-making tasks.
We compare the performance of LLMs with a cognitive instance-based learning model, which imitates human experiential decision-making.
arXiv Detail & Related papers (2024-07-12T14:13:06Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.