Composing Ensembles of Instrument-Model Pairs for Optimizing Profitability in Algorithmic Trading
- URL: http://arxiv.org/abs/2411.13559v1
- Date: Wed, 06 Nov 2024 18:17:26 GMT
- Title: Composing Ensembles of Instrument-Model Pairs for Optimizing Profitability in Algorithmic Trading
- Authors: Sahand Hassanizorgabad,
- Abstract summary: This paper describes a daily price directional predictive system of financial instruments, addressing the difficulty of predicting short-term price movements.
Strategy was back-tested on a wide range of financial instruments and time frames, demonstrating an improvement of 20% over the benchmark.
- Score: 0.0
- License:
- Abstract: Financial markets are nonlinear with complexity, where different types of assets are traded between buyers and sellers, each having a view to maximize their Return on Investment (ROI). Forecasting market trends is a challenging task since various factors like stock-specific news, company profiles, public sentiments, and global economic conditions influence them. This paper describes a daily price directional predictive system of financial instruments, addressing the difficulty of predicting short-term price movements. This paper will introduce the development of a novel trading system methodology by proposing a two-layer Composing Ensembles architecture, optimized through grid search, to predict whether the price will rise or fall the next day. This strategy was back-tested on a wide range of financial instruments and time frames, demonstrating an improvement of 20% over the benchmark, representing a standard investment strategy.
Related papers
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
This paper introduces BreakGPT, a novel large language model (LLM) architecture adapted specifically for time series forecasting and the prediction of sharp upward movements in asset prices.
We showcase BreakGPT as a promising solution for financial forecasting with minimal training and as a strong competitor for capturing both local and global temporal dependencies.
arXiv Detail & Related papers (2024-11-09T05:40:32Z) - FinBERT-BiLSTM: A Deep Learning Model for Predicting Volatile Cryptocurrency Market Prices Using Market Sentiment Dynamics [3.6423651166048874]
We propose a hybrid model that combines Bidirectional Long Short-Term Memory (Bi-LSTM) networks with FinBERT to enhance forecasting accuracy for cryptocurrencies.
This approach fills a key gap in forecasting volatile financial markets by blending advanced time series models with sentiment analysis.
arXiv Detail & Related papers (2024-11-02T14:43:06Z) - Developing An Attention-Based Ensemble Learning Framework for Financial Portfolio Optimisation [0.0]
We propose a multi-agent and self-adaptive portfolio optimisation framework integrated with attention mechanisms and time series, namely the MASAAT.
By reconstructing the tokens of financial data in a sequence, the attention-based cross-sectional analysis module and temporal analysis module of each agent can effectively capture the correlations between assets and the dependencies between time points.
The experimental results clearly demonstrate that the MASAAT framework achieves impressive enhancement when compared with many well-known portfolio optimsation approaches.
arXiv Detail & Related papers (2024-04-13T09:10:05Z) - Enhancing Financial Data Visualization for Investment Decision-Making [0.04096453902709291]
This paper delves into the potential of Long Short-Term Memory (LSTM) networks for predicting stock dynamics.
The study incorporates multiple features to enhance LSTM's capacity in capturing complex patterns.
The meticulously crafted LSTM incorporates crucial price and volume attributes over a 25-day time step.
arXiv Detail & Related papers (2023-12-09T07:53:25Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
We develop a novel deep multi-factor model that adopts industry neutralization and market neutralization modules with clear financial insights.
Tests on real-world stock market data demonstrate the effectiveness of our deep multi-factor model.
arXiv Detail & Related papers (2022-10-22T14:47:11Z) - REST: Relational Event-driven Stock Trend Forecasting [76.08435590771357]
We propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods.
To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts.
To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks.
arXiv Detail & Related papers (2021-02-15T07:22:09Z) - Universal Trading for Order Execution with Oracle Policy Distillation [99.57416828489568]
We propose a novel universal trading policy optimization framework to bridge the gap between the noisy yet imperfect market states and the optimal action sequences for order execution.
We show that our framework can better guide the learning of the common policy towards practically optimal execution by an oracle teacher with perfect information.
arXiv Detail & Related papers (2021-01-28T05:52:18Z) - Trader-Company Method: A Metaheuristic for Interpretable Stock Price
Prediction [3.9189409002585562]
There are several challenges in financial markets hindering practical applications of machine learning-based models.
We propose the Trader-Company method, a novel evolutionary model that mimics the roles of a financial institute and traders.
Our method predicts future stock returns by aggregating suggestions from multiple weak learners called Traders.
arXiv Detail & Related papers (2020-12-18T13:19:27Z) - GA-MSSR: Genetic Algorithm Maximizing Sharpe and Sterling Ratio Method
for RoboTrading [0.4568777157687961]
Foreign exchange is the largest financial market in the world.
Most literature used historical price information and technical indicators for training.
To address this problem, we designed trading rule features that are derived from technical indicators and trading rules.
arXiv Detail & Related papers (2020-08-16T05:33:35Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
Portfolio management (PM) aims to achieve investment goals such as maximal profits or minimal risks.
In this paper, we propose SARL, a novel State-Augmented RL framework for PM.
Our framework aims to address two unique challenges in financial PM: (1) data Heterogeneous data -- the collected information for each asset is usually diverse, noisy and imbalanced (e.g., news articles); and (2) environment uncertainty -- the financial market is versatile and non-stationary.
arXiv Detail & Related papers (2020-02-09T08:10:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.