Graph neural network framework for energy mapping of hybrid monte-carlo molecular dynamics simulations of Medium Entropy Alloys
- URL: http://arxiv.org/abs/2411.13670v1
- Date: Wed, 20 Nov 2024 19:22:40 GMT
- Title: Graph neural network framework for energy mapping of hybrid monte-carlo molecular dynamics simulations of Medium Entropy Alloys
- Authors: Mashaekh Tausif Ehsan, Saifuddin Zafar, Apurba Sarker, Sourav Das Suvro, Mohammad Nasim Hasan,
- Abstract summary: The present study proposes a graph-based representation for modeling medium-entropy alloys (MEAs)
Hybrid Monte-Carlo molecular dynamics (MC/MD) simulations are employed to achieve thermally stable structures across various annealing temperatures in an MEA.
These simulations generate dump files and potential energy labels, which are used to construct graph representations of the atomic configurations.
These graphs then serve as input for a Graph Convolutional Neural Network (GCNN) based ML model to predict the system's potential energy.
- Score: 0.0
- License:
- Abstract: Machine learning (ML) methods have drawn significant interest in material design and discovery. Graph neural networks (GNNs), in particular, have demonstrated strong potential for predicting material properties. The present study proposes a graph-based representation for modeling medium-entropy alloys (MEAs). Hybrid Monte-Carlo molecular dynamics (MC/MD) simulations are employed to achieve thermally stable structures across various annealing temperatures in an MEA. These simulations generate dump files and potential energy labels, which are used to construct graph representations of the atomic configurations. Edges are created between each atom and its 12 nearest neighbors without incorporating explicit edge features. These graphs then serve as input for a Graph Convolutional Neural Network (GCNN) based ML model to predict the system's potential energy. The GCNN architecture effectively captures the local environment and chemical ordering within the MEA structure. The GCNN-based ML model demonstrates strong performance in predicting potential energy at different steps, showing satisfactory results on both the training data and unseen configurations. Our approach presents a graph-based modeling framework for MEAs and high-entropy alloys (HEAs), which effectively captures the local chemical order (LCO) within the alloy structure. This allows us to predict key material properties influenced by LCO in both MEAs and HEAs, providing deeper insights into how atomic-scale arrangements affect the properties of these alloys.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Do Graph Neural Networks Work for High Entropy Alloys? [12.002942104379986]
High-entropy alloys (HEAs) lack chemical long-range order, limiting the applicability of current graph representations.
We introduce the LESets machine learning model, an accurate, interpretable GNN for HEA property prediction.
We demonstrate the accuracy of LESets in modeling the mechanical properties ofquaternary HEAs.
arXiv Detail & Related papers (2024-08-29T08:20:02Z) - Band-gap regression with architecture-optimized message-passing neural
networks [1.9590152885845324]
We train an MPNN to first classify materials through density functional theory data from the AFLOW database as being metallic or semiconducting/insulating.
We then perform a neural-architecture search to explore the model architecture and hyper parameter space of MPNNs to predict the band gaps of the materials identified as non-metals.
The top-performing models from the search are pooled into an ensemble that significantly outperforms existing models from the literature.
arXiv Detail & Related papers (2023-09-12T16:13:10Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based
Single-Atom Alloy Catalysts for CO2 Reduction Reaction [61.9212585617803]
Graph neural networks (GNNs) have drawn more and more attention from material scientists.
We develop a multi-task (MT) architecture based on DimeNet++ and mixture density networks to improve the performance of such task.
arXiv Detail & Related papers (2022-09-15T13:52:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Prediction of the electron density of states for crystalline compounds
with Atomistic Line Graph Neural Networks (ALIGNN) [0.0]
We present an extension of the recently developed Atomistic Line Graph Neural Network (ALIGNN) to accurately predict DOS of a large set of material unit cell structures.
We evaluate two methods of representation of the target quantity - a direct discretized spectrum, and a compressed low-dimensional representation obtained using an autoencoder.
arXiv Detail & Related papers (2022-01-20T18:28:22Z) - Orbital Graph Convolutional Neural Network for Material Property
Prediction [0.0]
We propose the Orbital Graph Convolutional Neural Network (OGCNN), a crystal graph convolutional neural network framework.
OGCNN includes atomic orbital interaction features that learn material properties in a robust way.
We examined the performance of this model on a broad range of crystalline material data to predict different properties.
arXiv Detail & Related papers (2020-08-14T15:22:22Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z) - Global Attention based Graph Convolutional Neural Networks for Improved
Materials Property Prediction [8.371766047183739]
We develop a novel model, GATGNN, for predicting inorganic material properties based on graph neural networks.
We show that our method is able to both outperform the previous models' predictions and provide insight into the crystallization of the material.
arXiv Detail & Related papers (2020-03-11T07:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.