論文の概要: XAgents: A Framework for Interpretable Rule-Based Multi-Agents Cooperation
- arxiv url: http://arxiv.org/abs/2411.13932v1
- Date: Thu, 21 Nov 2024 08:28:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:19:29.840317
- Title: XAgents: A Framework for Interpretable Rule-Based Multi-Agents Cooperation
- Title(参考訳): XAgents: 解釈可能なルールベースのマルチエージェント協調フレームワーク
- Authors: Hailong Yang, Mingxian Gu, Renhuo Zhao, Fuping Hu, Zhaohong Deng, Yitang Chen,
- Abstract要約: XAgents は IF-THEN ルールベースのシステムに基づく,解釈可能なマルチエージェント協調フレームワークである。
XAgetnsはタスクを異なるドメインルールに送信し、その後様々なレスポンスを生成する。
ルールベースの解釈可能性の導入は、XAgentsフレームワークに対するユーザの信頼を高めるのに役立ちます。
- 参考スコア(独自算出の注目度): 4.872631281771186
- License:
- Abstract: Extracting implicit knowledge and logical reasoning abilities from large language models (LLMs) has consistently been a significant challenge. The advancement of multi-agent systems has further en-hanced the capabilities of LLMs. Inspired by the structure of multi-polar neurons (MNs), we propose the XAgents framework, an in-terpretable multi-agent cooperative framework based on the IF-THEN rule-based system. The IF-Parts of the rules are responsible for logical reasoning and domain membership calculation, while the THEN-Parts are comprised of domain expert agents that generate domain-specific contents. Following the calculation of the member-ship, XAgetns transmits the task to the disparate domain rules, which subsequently generate the various responses. These re-sponses are analogous to the answers provided by different experts to the same question. The final response is reached at by eliminat-ing the hallucinations and erroneous knowledge of the LLM through membership computation and semantic adversarial genera-tion of the various domain rules. The incorporation of rule-based interpretability serves to bolster user confidence in the XAgents framework. We evaluate the efficacy of XAgents through a com-parative analysis with the latest AutoAgents, in which XAgents demonstrated superior performance across three distinct datasets. We perform post-hoc interpretable studies with SHAP algorithm and case studies, proving the interpretability of XAgent in terms of input-output feature correlation and rule-based semantics.
- Abstract(参考訳): 大きな言語モデル(LLM)から暗黙の知識と論理的推論能力を抽出することは、一貫して重要な課題である。
マルチエージェントシステムの進歩により、LLMの能力はさらに強化された。
マルチポーラニューロン (MN) の構造に着想を得て, IF-THEN ルールに基づく, 予測不能なマルチエージェント協調フレームワーク XAgents フレームワークを提案する。
ルールのIF-Partsは論理的推論とドメインメンバーシップ計算に責任を持ち、TheN-Partsはドメイン固有のコンテンツを生成するドメインエキスパートエージェントで構成されている。
メンバーシップの計算の後、XAgetnsは異なるドメインルールにタスクを送信し、その後様々なレスポンスを生成する。
これらのリレスポンスは、異なる専門家が同じ質問に対して提示した回答に類似している。
最終応答は、様々なドメイン・ルールのメンバシップ計算とセマンティック・ディベサール・ジェネレーションを通じて、LLMの幻覚と誤った知識をエリミネートすることで達成される。
ルールベースの解釈可能性の導入は、XAgentsフレームワークに対するユーザの信頼を高めるのに役立ちます。
我々は、XAgentsが3つの異なるデータセットで優れた性能を示した最新のAutoAgentsを用いた比較分析により、XAgentsの有効性を評価する。
我々は、入力出力特徴相関とルールに基づく意味論の観点から、XAgentの解釈可能性を証明する、SHAPアルゴリズムとケーススタディを用いて、ポストホック解釈研究を行う。
関連論文リスト
- Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel AgentはG"odelマシンにインスパイアされた自己進化型フレームワークである。
G"odel Agentは、パフォーマンス、効率、一般化性において手作業によるエージェントを上回る、継続的な自己改善を実現することができる。
論文 参考訳(メタデータ) (2024-10-06T10:49:40Z) - Textualized Agent-Style Reasoning for Complex Tasks by Multiple Round LLM Generation [49.27250832754313]
我々は、llmベースの自律エージェントフレームワークであるAgentCOTを紹介する。
それぞれのステップで、AgentCOTはアクションを選択し、それを実行して、証拠を裏付ける中間結果を得る。
エージェントCOTの性能を高めるための2つの新しい戦略を導入する。
論文 参考訳(メタデータ) (2024-09-19T02:20:06Z) - Optimizing Collaboration of LLM based Agents for Finite Element Analysis [1.5039745292757671]
本稿では,Large Language Models (LLM) 内の複数のエージェント間の相互作用について,プログラミングおよびコーディングタスクの文脈で検討する。
我々はAutoGenフレームワークを利用してエージェント間の通信を容易にし、各セットアップの40のランダムランからの成功率に基づいて異なる構成を評価する。
論文 参考訳(メタデータ) (2024-08-23T23:11:08Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
MARL(Multi-agent Reinforcement Learning)は、シーケンシャルな意思決定と制御タスクの鍵となるフレームワークである。
これらのシステムを現実のシナリオに展開するには、分散トレーニング、多様なエージェントセット、そして頻繁な環境報酬信号から学ぶ必要がある。
我々は,新しいグラフニューラルネットワーク(GNN)に基づく本質的なモチベーションを利用して,異種エージェントポリシーの学習を容易にするCoHetアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-12T21:38:40Z) - Hypothetical Minds: Scaffolding Theory of Mind for Multi-Agent Tasks with Large Language Models [4.9108308035618515]
マルチエージェント強化学習(MARL)法はマルチエージェントシステムの非定常性に対処する。
ここでは、大きな言語モデル(LLM)を活用して、これらの課題に対処できる自律エージェントを作成します。
私たちのエージェントである仮説的マインドスは、認知にインスパイアされたアーキテクチャで構成されており、知覚、記憶、階層的な2段階の抽象化計画のためのモジュラーコンポーネントを備えています。
論文 参考訳(メタデータ) (2024-07-09T17:57:15Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgentは進化的アルゴリズムによって専門家エージェントをマルチエージェントシステムに自動的に拡張する汎用的な手法である。
EvoAgentは複数の専門家エージェントを自動生成し,LLMエージェントのタスク解決能力を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2024-06-20T11:49:23Z) - A Dynamic LLM-Powered Agent Network for Task-Oriented Agent Collaboration [55.35849138235116]
本稿では,様々なタスクやドメインに対する動的コミュニケーション構造において,候補からエージェントのチームを自動的に選択する手法を提案する。
具体的には, LLMを利用したエージェント協調のための動的LLMパワーエージェントネットワーク(textDyLAN$)というフレームワークを構築した。
我々は、コード生成、意思決定、一般的な推論、算術的推論タスクにおいて、適度な計算コストで、DyLANが強力なベースラインを上回ることを実証する。
論文 参考訳(メタデータ) (2023-10-03T16:05:48Z) - Deep Multi-Agent Reinforcement Learning for Decentralized Active
Hypothesis Testing [11.639503711252663]
我々は,深層多エージェント強化学習の枠組みに根ざした新しいアルゴリズムを導入することで,マルチエージェント能動仮説テスト(AHT)問題に取り組む。
エージェントが協調戦略を学習し、性能を向上させる能力を効果的に示す実験結果を包括的に提示する。
論文 参考訳(メタデータ) (2023-09-14T01:18:04Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
マルチエージェント強化学習(MARL)理論における中心的な問題は、構造条件やアルゴリズムの原理がサンプル効率の学習保証につながるかを理解することである。
本稿では,複数のエージェントを用いた対話型意思決定のための一般的な枠組みとして,この問題について考察する。
マルチエージェント意思決定における統計的複雑性を特徴付けることは、単一エージェント決定の統計的複雑性を特徴付けることと等価であることを示す。
論文 参考訳(メタデータ) (2023-05-01T06:46:22Z) - MAVIPER: Learning Decision Tree Policies for Interpretable Multi-Agent
Reinforcement Learning [38.77840067555711]
本稿では,MARLを用いて訓練されたニューラルネットワークから決定木ポリシーを抽出する,解釈可能なMARLアルゴリズムの最初のセットを提案する。
第1のアルゴリズムであるIVIPERは、シングルエージェント解釈可能なRLの最近の方法であるVIPERをマルチエージェント設定に拡張する。
そこで本研究では,エージェント間の協調関係をよりよく把握するために,新しい集中型決定木学習アルゴリズムMAVIPERを提案する。
論文 参考訳(メタデータ) (2022-05-25T02:38:10Z) - Randomized Entity-wise Factorization for Multi-Agent Reinforcement
Learning [59.62721526353915]
実世界のマルチエージェント設定は、エージェントや非エージェントエンティティのタイプや量が異なるタスクを伴うことが多い。
我々の方法は、これらの共通点を活用することを目的としており、「観察対象のランダムに選択されたサブグループのみを考えるとき、各エージェントが期待する効用は何か?」という問いを投げかける。
論文 参考訳(メタデータ) (2020-06-07T18:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。