論文の概要: Adaptive Anomaly Detection for Identifying Attacks in Cyber-Physical Systems: A Systematic Literature Review
- arxiv url: http://arxiv.org/abs/2411.14278v2
- Date: Fri, 03 Jan 2025 21:56:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:01:47.649003
- Title: Adaptive Anomaly Detection for Identifying Attacks in Cyber-Physical Systems: A Systematic Literature Review
- Title(参考訳): サイバー物理システムにおける攻撃同定のための適応的異常検出:システム文献レビュー
- Authors: Pablo Moriano, Steven C. Hespeler, Mingyan Li, Maria Mahbub,
- Abstract要約: 本稿では,適応異常検出(Adaptive Anomaly Detection, AAD)研究の体系的文献レビュー(SLR)について述べる。
AADは、進化するサイバー攻撃を検出する最も有望な技術の一つである。
本稿では,攻撃タイプ,CPSアプリケーション,学習パラダイム,データ管理,アルゴリズムを考慮した新しい分類法を提案する。
我々は、研究者が最先端の技術を身につけるのを手助けし、実践者がこの分野の最近の進歩に親しむのを助けることを目的としている。
- 参考スコア(独自算出の注目度): 4.580544659826873
- License:
- Abstract: Modern cyberattacks in cyber-physical systems (CPS) rapidly evolve and cannot be deterred effectively with most current methods which focused on characterizing past threats. Adaptive anomaly detection (AAD) is among the most promising techniques to detect evolving cyberattacks focused on fast data processing and model adaptation. AAD has been researched in the literature extensively; however, to the best of our knowledge, our work is the first systematic literature review (SLR) on the current research within this field. We present a comprehensive SLR, gathering 397 relevant papers and systematically analyzing 65 of them (47 research and 18 survey papers) on AAD in CPS studies from 2013 to 2023 (November). We introduce a novel taxonomy considering attack types, CPS application, learning paradigm, data management, and algorithms. Our analysis indicates, among other findings, that reviewed works focused on a single aspect of adaptation (either data processing or model adaptation) but rarely in both at the same time. We aim to help researchers to advance the state of the art and help practitioners to become familiar with recent progress in this field. We identify the limitations of the state of the art and provide recommendations for future research directions.
- Abstract(参考訳): サイバー物理システム(CPS)における現代のサイバー攻撃は急速に発展し、過去の脅威を特徴づけることに焦点を当てた現在のほとんどの方法では効果的に破壊できない。
適応異常検出(Adaptive Anomaly Detection, AAD)は、高速なデータ処理とモデル適応に焦点を当てた、進化するサイバー攻撃を検出する最も有望な技術の一つである。
AADは文献で広く研究されているが、我々の知る限り、この分野における現在の研究に関する最初の体系的文献レビュー(SLR)である。
2013年から2023年11月までのCPS研究において,397件の関連論文を集め,65件(調査47件,調査18件)を体系的に分析した。
本稿では,攻撃タイプ,CPSアプリケーション,学習パラダイム,データ管理,アルゴリズムを考慮した新しい分類法を提案する。
分析の結果,データ処理やモデル適応の単一側面に焦点が当てられているが,同時に行うことは稀であることがわかった。
我々は、研究者が最先端の技術を推進し、実践者がこの分野の最近の進歩に親しむのを助けることを目的としている。
我々は最先端の限界を特定し、今後の研究の方向性を推奨する。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - An Investigation into the Performances of the State-of-the-art Machine Learning Approaches for Various Cyber-attack Detection: A Survey [1.1881667010191568]
我々は過去5年間の様々なサイバー攻撃検出における最先端の機械学習モデルの適合性について分析した。
我々はまた、異種サイバー攻撃の検出における最先端の分類器と新しいフレームワークに関する最近の研究の適性、効率、限界についてもレビューした。
論文 参考訳(メタデータ) (2024-02-26T22:04:25Z) - Topological safeguard for evasion attack interpreting the neural
networks' behavior [0.0]
本研究は, 新規な回避攻撃検知装置の開発である。
入力サンプルが注入されたとき、モデルによって与えられるニューロンの活性化に関する情報に焦点を当てる。
この目的のためには、これらの情報をすべて検出器に導入するために、巨大なデータ前処理が必要である。
論文 参考訳(メタデータ) (2024-02-12T08:39:40Z) - Resilience of Deep Learning applications: a systematic literature review of analysis and hardening techniques [3.265458968159693]
このレビューは、2019年1月から2024年3月までに発行された220の科学論文に基づいている。
著者らは、研究の類似点と特異点を解釈し、強調するために分類フレームワークを採用している。
論文 参考訳(メタデータ) (2023-09-27T19:22:19Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Intrusion Detection Systems Using Support Vector Machines on the
KDDCUP'99 and NSL-KDD Datasets: A Comprehensive Survey [6.847009696437944]
我々は、サイバーセキュリティにおいて最も広く使われている2つのデータセット、すなわちKDDCUP'99とNSL-KDDデータセットで評価された研究に焦点を当てた。
本稿では,SVMの役割や研究に関わるアルゴリズムについて,各手法の概要について述べる。
論文 参考訳(メタデータ) (2022-09-12T20:02:12Z) - Poisoning Attacks and Defenses on Artificial Intelligence: A Survey [3.706481388415728]
データ中毒攻撃は、トレーニングフェーズ中にモデルに供給されたデータサンプルを改ざんして、推論フェーズ中にモデルの精度を低下させる攻撃の一種である。
この研究は、この種の攻撃に対処する最新の文献で見つかった最も関連性の高い洞察と発見をまとめたものである。
実環境下での幅広いMLモデルに対するデータ中毒の影響を比較検討し,本研究の徹底的な評価を行った。
論文 参考訳(メタデータ) (2022-02-21T14:43:38Z) - Threat of Adversarial Attacks on Deep Learning in Computer Vision:
Survey II [86.51135909513047]
ディープラーニングは、予測を操作できる敵攻撃に対して脆弱である。
本稿では,ディープラーニングに対する敵対的攻撃におけるコンピュータビジョンコミュニティの貢献を概観する。
この領域では、非専門家に技術的な用語の定義を提供する。
論文 参考訳(メタデータ) (2021-08-01T08:54:47Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Anomalous Example Detection in Deep Learning: A Survey [98.2295889723002]
本調査は,ディープラーニングアプリケーションにおける異常検出の研究について,構造化された包括的概要を提供する。
既存の技術に対する分類法を,その基礎となる前提と採用アプローチに基づいて提案する。
本稿では,DLシステムに異常検出技術を適用しながら未解決の研究課題を取り上げ,今後の課題について述べる。
論文 参考訳(メタデータ) (2020-03-16T02:47:23Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。