Model Checking for Reinforcement Learning in Autonomous Driving: One Can Do More Than You Think!
- URL: http://arxiv.org/abs/2411.14375v1
- Date: Thu, 21 Nov 2024 18:09:20 GMT
- Title: Model Checking for Reinforcement Learning in Autonomous Driving: One Can Do More Than You Think!
- Authors: Rong Gu,
- Abstract summary: reinforcement learning platforms often emphasise the design of RL algorithms and the training performance but neglect the correctness of models and reward functions.
This paper proposes using formal methods to model autonomous driving systems and demonstrates how model checking (MC) can be used in RL for AD.
- Score: 3.2031003471765285
- License:
- Abstract: Most reinforcement learning (RL) platforms use high-level programming languages, such as OpenAI Gymnasium using Python. These frameworks provide various API and benchmarks for testing RL algorithms in different domains, such as autonomous driving (AD) and robotics. These platforms often emphasise the design of RL algorithms and the training performance but neglect the correctness of models and reward functions, which can be crucial for the successful application of RL. This paper proposes using formal methods to model AD systems and demonstrates how model checking (MC) can be used in RL for AD. Most studies combining MC and RL focus on safety, such as safety shields. However, this paper shows different facets where MC can strengthen RL. First, an MC-based model pre-analysis can reveal bugs with respect to sensor accuracy and learning step size. This step serves as a preparation of RL, which saves time if bugs exist and deepens users' understanding of the target system. Second, reward automata can benefit the design of reward functions and greatly improve learning performance especially when the learning objectives are multiple. All these findings are supported by experiments.
Related papers
- RLInspect: An Interactive Visual Approach to Assess Reinforcement Learning Algorithm [0.0]
Reinforcement Learning (RL) is a rapidly growing area of machine learning.
Assessing RL models can be challenging, which makes it difficult to interpret their behaviour.
We have developed RLInspect, an interactive visual analytic tool.
It takes into account different components of the RL model - state, action, agent architecture and reward, and provides a more comprehensive view of the RL training.
arXiv Detail & Related papers (2024-11-13T07:24:14Z) - Improving Large Language Models via Fine-grained Reinforcement Learning with Minimum Editing Constraint [104.53687944498155]
Reinforcement learning (RL) has been widely used in training large language models (LLMs)
We propose a new RL method named RLMEC that incorporates a generative model as the reward model.
Based on the generative reward model, we design the token-level RL objective for training and an imitation-based regularization for stabilizing RL process.
arXiv Detail & Related papers (2024-01-11T17:58:41Z) - Reinforcement Learning with Foundation Priors: Let the Embodied Agent Efficiently Learn on Its Own [59.11934130045106]
We propose Reinforcement Learning with Foundation Priors (RLFP) to utilize guidance and feedback from policy, value, and success-reward foundation models.
Within this framework, we introduce the Foundation-guided Actor-Critic (FAC) algorithm, which enables embodied agents to explore more efficiently with automatic reward functions.
Our method achieves remarkable performances in various manipulation tasks on both real robots and in simulation.
arXiv Detail & Related papers (2023-10-04T07:56:42Z) - SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering [49.78647219715034]
We propose a sensing-aware model-based reinforcement learning system called SAM-RL.
With the sensing-aware learning pipeline, SAM-RL allows a robot to select an informative viewpoint to monitor the task process.
We apply our framework to real world experiments for accomplishing three manipulation tasks: robotic assembly, tool manipulation, and deformable object manipulation.
arXiv Detail & Related papers (2022-10-27T05:30:43Z) - Automated Reinforcement Learning: An Overview [6.654552816487819]
Reinforcement Learning and Deep Reinforcement Learning are popular methods for solving sequential decision making problems.
In this article, we explore the literature and present recent work that can be used in automated RL.
arXiv Detail & Related papers (2022-01-13T14:28:06Z) - Automated Reinforcement Learning (AutoRL): A Survey and Open Problems [92.73407630874841]
Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL.
We provide a common taxonomy, discuss each area in detail and pose open problems which would be of interest to researchers going forward.
arXiv Detail & Related papers (2022-01-11T12:41:43Z) - RvS: What is Essential for Offline RL via Supervised Learning? [77.91045677562802]
Recent work has shown that supervised learning alone, without temporal difference (TD) learning, can be remarkably effective for offline RL.
In every environment suite we consider simply maximizing likelihood with two-layer feedforward is competitive.
They also probe the limits of existing RvS methods, which are comparatively weak on random data.
arXiv Detail & Related papers (2021-12-20T18:55:16Z) - Vision-Based Autonomous Car Racing Using Deep Imitative Reinforcement
Learning [13.699336307578488]
Deep imitative reinforcement learning approach (DIRL) achieves agile autonomous racing using visual inputs.
We validate our algorithm both in a high-fidelity driving simulation and on a real-world 1/20-scale RC-car with limited onboard computation.
arXiv Detail & Related papers (2021-07-18T00:00:48Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL)
By replacing the image encoder with a DARTS supernet, our search method is sample-efficient, requires minimal extra compute resources, and is also compatible with off-policy and on-policy RL algorithms, needing only minor changes in preexisting code.
We show that the supernet gradually learns better cells, leading to alternative architectures which can be highly competitive against manually designed policies, but also verify previous design choices for RL policies.
arXiv Detail & Related papers (2021-06-04T03:08:43Z) - Formula RL: Deep Reinforcement Learning for Autonomous Racing using
Telemetry Data [4.042350304426975]
We frame the problem as a reinforcement learning task with a multidimensional input consisting of the vehicle telemetry, and a continuous action space.
We put 10 variants of deep deterministic policy gradient (DDPG) to race in two experiments.
Our studies show that models trained with RL are not only able to drive faster than the baseline open source handcrafted bots but also generalize to unknown tracks.
arXiv Detail & Related papers (2021-04-22T14:40:12Z) - Auto-Agent-Distiller: Towards Efficient Deep Reinforcement Learning
Agents via Neural Architecture Search [14.292072505007974]
We propose an Auto-Agent-Distiller (A2D) framework to automatically search for the optimal DRL agents for various tasks.
We demonstrate that vanilla NAS can easily fail in searching for the optimal agents, due to its resulting high variance in DRL training stability.
We then develop a novel distillation mechanism to distill the knowledge from both the teacher agent's actor and critic to stabilize the searching process and improve the searched agents' optimality.
arXiv Detail & Related papers (2020-12-24T04:07:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.