Open Challenges in the Formal Verification of Autonomous Driving
- URL: http://arxiv.org/abs/2411.14520v1
- Date: Thu, 21 Nov 2024 18:09:35 GMT
- Title: Open Challenges in the Formal Verification of Autonomous Driving
- Authors: Paolo Burgio, Angelo Ferrando, Marco Villani,
- Abstract summary: We present a real-world case study of an autonomous driving system.
We identify key open challenges associated with its development and integration.
We explore how formal verification techniques can address these challenges to ensure system reliability and safety.
- Score: 0.0
- License:
- Abstract: In the realm of autonomous driving, the development and integration of highly complex and heterogeneous systems are standard practice. Modern vehicles are not monolithic systems; instead, they are composed of diverse hardware components, each running its own software systems. An autonomous vehicle comprises numerous independent components, often developed by different and potentially competing companies. This diversity poses significant challenges for the certification process, as it necessitates certifying components that may not disclose their internal behaviour (black-boxes). In this paper, we present a real-world case study of an autonomous driving system, identify key open challenges associated with its development and integration, and explore how formal verification techniques can address these challenges to ensure system reliability and safety.
Related papers
- Exploring the Interplay Between Video Generation and World Models in Autonomous Driving: A Survey [61.39993881402787]
World models and video generation are pivotal technologies in the domain of autonomous driving.
This paper investigates the relationship between these two technologies.
By analyzing the interplay between video generation and world models, this survey identifies critical challenges and future research directions.
arXiv Detail & Related papers (2024-11-05T08:58:35Z) - The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition [136.32656319458158]
The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies.
This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries.
The competition culminated in 15 top-performing solutions.
arXiv Detail & Related papers (2024-05-14T17:59:57Z) - On STPA for Distributed Development of Safe Autonomous Driving: An Interview Study [0.7851536646859475]
System-Theoretic Process Analysis (STPA) is a novel method applied in safety-related fields like defense and aerospace.
STPA assumes prerequisites that are not fully valid in the automotive system engineering with distributed system development and multi-abstraction design levels.
This can be seen as a maintainability challenge in continuous development and deployment.
arXiv Detail & Related papers (2024-03-14T15:56:02Z) - Security Challenges in Autonomous Systems Design [1.864621482724548]
With the independence from human control, cybersecurity of such systems becomes even more critical.
With the independence from human control, cybersecurity of such systems becomes even more critical.
This paper thoroughly discusses the state of the art, identifies emerging security challenges and proposes research directions.
arXiv Detail & Related papers (2023-11-05T09:17:39Z) - LLM4Drive: A Survey of Large Language Models for Autonomous Driving [62.10344445241105]
Large language models (LLMs) have demonstrated abilities including understanding context, logical reasoning, and generating answers.
In this paper, we systematically review a research line about textitLarge Language Models for Autonomous Driving (LLM4AD).
arXiv Detail & Related papers (2023-11-02T07:23:33Z) - Drive Anywhere: Generalizable End-to-end Autonomous Driving with
Multi-modal Foundation Models [114.69732301904419]
We present an approach to apply end-to-end open-set (any environment/scene) autonomous driving that is capable of providing driving decisions from representations queryable by image and text.
Our approach demonstrates unparalleled results in diverse tests while achieving significantly greater robustness in out-of-distribution situations.
arXiv Detail & Related papers (2023-10-26T17:56:35Z) - Future Vision of Dynamic Certification Schemes for Autonomous Systems [3.151005833357807]
We identify several issues with the current certification strategies that could pose serious safety risks.
We highlight the inadequate reflection of software changes in constantly evolving systems and the lack of support for systems' cooperation.
Other shortcomings include the narrow focus of awarded certification, neglecting aspects such as the ethical behavior of autonomous software systems.
arXiv Detail & Related papers (2023-08-20T19:06:57Z) - Rethinking Certification for Higher Trust and Ethical Safeguarding of
Autonomous Systems [6.24907186790431]
We discuss the motivation for the need to modify the current certification processes for autonomous driving systems.
We identify a number of issues with the proposed certification strategies, which may impact the systems substantially.
arXiv Detail & Related papers (2023-03-16T15:19:25Z) - Scalable Vehicle Re-Identification via Self-Supervision [66.2562538902156]
Vehicle Re-Identification is one of the key elements in city-scale vehicle analytics systems.
Many state-of-the-art solutions for vehicle re-id mostly focus on improving the accuracy on existing re-id benchmarks and often ignore computational complexity.
We propose a simple yet effective hybrid solution empowered by self-supervised training which only uses a single network during inference time.
arXiv Detail & Related papers (2022-05-16T12:14:42Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
We introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving.
We design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent.
arXiv Detail & Related papers (2022-03-04T16:14:33Z) - Systems Challenges for Trustworthy Embodied Systems [0.0]
A new generation of increasingly autonomous and self-learning systems, which we call embodied systems, is about to be developed.
It is crucial to coordinate the behavior of embodied systems in a beneficial manner, ensure their compatibility with our human-centered social values, and design verifiably safe and reliable human-machine interaction.
We are arguing that raditional systems engineering is coming to a climacteric from embedded to embodied systems, and with assuring the trustworthiness of dynamic federations of situationally aware, intent-driven, explorative, ever-evolving, largely non-predictable, and increasingly autonomous embodied systems in
arXiv Detail & Related papers (2022-01-10T15:52:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.