FOCUS: Knowledge-enhanced Adaptive Visual Compression for Few-shot Whole Slide Image Classification
- URL: http://arxiv.org/abs/2411.14743v1
- Date: Fri, 22 Nov 2024 05:36:38 GMT
- Title: FOCUS: Knowledge-enhanced Adaptive Visual Compression for Few-shot Whole Slide Image Classification
- Authors: Zhengrui Guo, Conghao Xiong, Jiabo Ma, Qichen Sun, Lishuang Feng, Jinzhuo Wang, Hao Chen,
- Abstract summary: Few-shot learning presents a critical solution for cancer diagnosis in computational pathology.
A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of contained patches.
We introduce the knowledge-enhanced adaptive visual compression framework, dubbed FOCUS, to enable a focused analysis of diagnostically relevant regions.
- Score: 4.148491257542209
- License:
- Abstract: Few-shot learning presents a critical solution for cancer diagnosis in computational pathology (CPath), addressing fundamental limitations in data availability, particularly the scarcity of expert annotations and patient privacy constraints. A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of contained patches, where a significant portion of these patches lacks diagnostically relevant information, potentially diluting the model's ability to learn and focus on critical diagnostic features. While recent works attempt to address this by incorporating additional knowledge, several crucial gaps hinder further progress: (1) despite the emergence of powerful pathology foundation models (FMs), their potential remains largely untapped, with most approaches limiting their use to basic feature extraction; (2) current language guidance mechanisms attempt to align text prompts with vast numbers of WSI patches all at once, struggling to leverage rich pathological semantic information. To this end, we introduce the knowledge-enhanced adaptive visual compression framework, dubbed FOCUS, which uniquely combines pathology FMs with language prior knowledge to enable a focused analysis of diagnostically relevant regions by prioritizing discriminative WSI patches. Our approach implements a progressive three-stage compression strategy: we first leverage FMs for global visual redundancy elimination, and integrate compressed features with language prompts for semantic relevance assessment, then perform neighbor-aware visual token filtering while preserving spatial coherence. Extensive experiments on pathological datasets spanning breast, lung, and ovarian cancers demonstrate its superior performance in few-shot pathology diagnosis. Code will be made available at https://github.com/dddavid4real/FOCUS.
Related papers
- ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
We announce MVKL, the first multimodal mammography dataset encompassing multi-view images, detailed manifestations and reports.
Based on this dataset, we focus on the challanging task of unsupervised pretraining.
We propose ViKL, a framework that synergizes Visual, Knowledge, and Linguistic features.
arXiv Detail & Related papers (2024-09-24T05:01:23Z) - Pathology-knowledge Enhanced Multi-instance Prompt Learning for Few-shot Whole Slide Image Classification [19.070685830687285]
In clinical settings, restricted access to pathology slides is inevitable due to patient privacy concerns and the prevalence of rare or emerging diseases.
This paper proposes a multi-instance prompt learning framework enhanced with pathology knowledge.
Our method demonstrates superior performance in three challenging clinical tasks, significantly outperforming comparative few-shot methods.
arXiv Detail & Related papers (2024-07-15T15:31:55Z) - Hierarchical Salient Patch Identification for Interpretable Fundus Disease Localization [4.714335699701277]
We propose a weakly supervised interpretable fundus disease localization method called hierarchical salient patch identification (HSPI)
HSPI can achieve interpretable disease localization using only image-level labels and a neural network classifier (NNC)
We conduct disease localization experiments on fundus image datasets and achieve the best performance on multiple evaluation metrics compared to previous interpretable attribution methods.
arXiv Detail & Related papers (2024-05-23T09:07:21Z) - Semantics-Aware Attention Guidance for Diagnosing Whole Slide Images [5.856390270089738]
We introduce a novel framework named Semantics-Aware Attention Guidance (SAG)
SAG includes 1) a technique for converting diagnostically relevant entities into attention signals, and 2) a flexible attention loss that efficiently integrates semantically significant information.
Our experiments on two distinct cancer datasets demonstrate consistent improvements in accuracy, precision, and recall.
arXiv Detail & Related papers (2024-04-16T20:37:14Z) - Shifting Focus: From Global Semantics to Local Prominent Features in Swin-Transformer for Knee Osteoarthritis Severity Assessment [42.09313885494969]
We harness the Swin Transformer's capacity to discern extended spatial dependencies within images through the hierarchical framework.
Our novel contribution lies in refining local feature representations, orienting them specifically toward the final distribution of the classifier.
Our model demonstrates significant robustness and precision, as evidenced by extensive validation of two established benchmarks for Knee OsteoArthritis (KOA) grade classification.
arXiv Detail & Related papers (2024-03-15T01:09:58Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Potential Features of ICU Admission in X-ray Images of COVID-19 Patients [8.83608410540057]
This paper presents an original methodology for extracting semantic features that correlate to severity from a data set with patient ICU admission labels.
The methodology employs a neural network trained to recognise lung pathologies to extract the semantic features.
The method has shown to be capable of selecting images for the learned features, which could translate some information about their common locations in the lung.
arXiv Detail & Related papers (2020-09-26T13:48:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.