論文の概要: The 1st Workshop on Human-Centered Recommender Systems
- arxiv url: http://arxiv.org/abs/2411.14760v1
- Date: Fri, 22 Nov 2024 06:46:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:02:24.596050
- Title: The 1st Workshop on Human-Centered Recommender Systems
- Title(参考訳): 第1回人間中心型レコメンダシステムワークショップ
- Authors: Kaike Zhang, Yunfan Wu, Yougang lyu, Du Su, Yingqiang Ge, Shuchang Liu, Qi Cao, Zhaochun Ren, Fei Sun,
- Abstract要約: このワークショップは、研究者が人間中心のレコメンダシステムを開発するためのプラットフォームを提供することを目的としている。
HCRSは、設計と運用の中心にある人間の要求、価値観、能力を優先するレコメンデーターシステムを作成することを指す。
このワークショップには、堅牢性、プライバシー、透明性、公正性、多様性、説明責任、倫理的考慮事項、ユーザフレンドリーなデザインなど、トピックスを含めるが制限されない。
- 参考スコア(独自算出の注目度): 27.23807230278776
- License:
- Abstract: Recommender systems are quintessential applications of human-computer interaction. Widely utilized in daily life, they offer significant convenience but also present numerous challenges, such as the information cocoon effect, privacy concerns, fairness issues, and more. Consequently, this workshop aims to provide a platform for researchers to explore the development of Human-Centered Recommender Systems~(HCRS). HCRS refers to the creation of recommender systems that prioritize human needs, values, and capabilities at the core of their design and operation. In this workshop, topics will include, but are not limited to, robustness, privacy, transparency, fairness, diversity, accountability, ethical considerations, and user-friendly design. We hope to engage in discussions on how to implement and enhance these properties in recommender systems. Additionally, participants will explore diverse evaluation methods, including innovative metrics that capture user satisfaction and trust. This workshop seeks to foster a collaborative environment for researchers to share insights and advance the field toward more ethical, user-centric, and socially responsible recommender systems.
- Abstract(参考訳): リコメンダーシステムは人間とコンピュータの相互作用の極めて重要な応用である。
日常生活で広く利用されており、非常に便利であるが、情報コクーン効果、プライバシー問題、公平性問題など、多くの課題も提示している。
このワークショップは、研究者が人間中心のレコメンダシステム~(HCRS)の開発を探求するためのプラットフォームを提供することを目的としている。
HCRSは、設計と運用の中心にある人間の要求、価値観、能力を優先するレコメンデーターシステムを作成することを指す。
このワークショップには、堅牢性、プライバシー、透明性、公正性、多様性、説明責任、倫理的考慮事項、ユーザフレンドリーなデザインなど、トピックスを含めるが制限されない。
我々は、レコメンデーションシステムにおいて、これらの特性をどのように実装し、拡張するかについての議論に携わることを期待している。
さらに参加者は、ユーザの満足度や信頼度を捉える革新的な指標など、さまざまな評価方法についても検討する。
このワークショップは、研究者が洞察を共有し、より倫理的で、ユーザー中心で、社会的に責任のあるレコメンデーションシステムに向けて分野を前進させるための共同環境の育成を目的としている。
関連論文リスト
- A Deep Dive into Fairness, Bias, Threats, and Privacy in Recommender Systems: Insights and Future Research [45.86892639035389]
本研究では,推薦システムにおける公正性,バイアス,脅威,プライバシについて検討する。
アルゴリズムによる決定が、意図せずバイアスを強化したり、特定のユーザやアイテムグループを疎外したりする方法について検討する。
この研究は、推薦システムの堅牢性、公正性、プライバシーを改善するための今後の研究の方向性を示唆している。
論文 参考訳(メタデータ) (2024-09-19T11:00:35Z) - RAH! RecSys-Assistant-Human: A Human-Centered Recommendation Framework
with LLM Agents [30.250555783628762]
この研究は、これらの問題に対処することは単にレコメンダシステムの責任ではないと主張している。
本稿では,RAH Recommenderシステム,Assistant,Humanフレームワークを紹介する。
私たちのコントリビューションは、さまざまなレコメンデーションモデルと効果的に連携する、人間中心のレコメンデーションフレームワークを提供します。
論文 参考訳(メタデータ) (2023-08-19T04:46:01Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - A Comprehensive Survey on Trustworthy Recommender Systems [32.523177842969915]
本稿では,信頼に値するレコメンダシステム (TRec) の概要について概説する。
それぞれの側面について、最近の技術についてまとめ、信頼性の高いレコメンデータシステムの実現を支援する研究の方向性について論じる。
論文 参考訳(メタデータ) (2022-09-21T04:34:17Z) - Practitioners Versus Users: A Value-Sensitive Evaluation of Current
Industrial Recommender System Design [27.448761282289585]
推奨品質、プライバシ、透明性、公平性、信頼性の5つの価値に重点を置いています。
この結果から,実践者とユーザ間の緊張関係の存在と源泉を,価値解釈,評価,実践の観点から明らかにした。
論文 参考訳(メタデータ) (2022-08-08T13:31:41Z) - FEBR: Expert-Based Recommendation Framework for beneficial and
personalized content [77.86290991564829]
推奨コンテンツの質を評価するための見習い学習フレームワークであるFEBR(Expert-Based Recommendation Framework)を提案する。
このフレームワークは、推奨評価環境において専門家(信頼できると仮定される)の実証された軌跡を利用して、未知のユーティリティ機能を回復する。
ユーザ関心シミュレーション環境(RecSim)によるソリューションの性能評価を行う。
論文 参考訳(メタデータ) (2021-07-17T18:21:31Z) - MARS-Gym: A Gym framework to model, train, and evaluate Recommender
Systems for Marketplaces [51.123916699062384]
MARS-Gymは、市場におけるレコメンデーションのための強化学習エージェントの構築と評価を行うオープンソースフレームワークである。
本稿では,Trivagoマーケットプレースデータセットにおいて,さまざまなベースラインエージェントの実装とメトリクス駆動による分析を行う。
学術研究と生産システムとのギャップを埋め、新しいアルゴリズムやアプリケーションの設計を容易にしたいと考えている。
論文 参考訳(メタデータ) (2020-09-30T16:39:31Z) - Knowledge Transfer via Pre-training for Recommendation: A Review and
Prospect [89.91745908462417]
実験による推薦システムに対する事前学習の利点を示す。
事前学習を伴うレコメンデータシステムの今後の研究に向けて,いくつかの将来的な方向性について論じる。
論文 参考訳(メタデータ) (2020-09-19T13:06:27Z) - Reinforcement Learning for Strategic Recommendations [32.73903761398027]
ストラテジックレコメンデーション(SR)とは、知的エージェントがユーザのシーケンシャルな行動や活動を観察し、いつ、どのように相互作用するかを決めて、ユーザとビジネスの両方の長期的な目的を最適化する問題を指す。
Adobeリサーチでは、関心点の推薦、チュートリアルレコメンデーション、マルチメディア編集ソフトウェアにおける次のステップガイダンス、ライフタイムバリューの最適化のための広告レコメンデーションなど、さまざまなユースケースでこのようなシステムを実装してきました。
ユーザのシーケンシャルな振る舞いをモデル化したり、いつ介入するかを決め、ユーザに迷惑をかけずにレコメンデーションを提示したり、オフラインでポリシーを評価するなど、これらのシステム構築には多くの研究課題がある。
論文 参考訳(メタデータ) (2020-09-15T20:45:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。