論文の概要: Predictive Modeling For Real-Time Personalized Health Monitoring in Muscular Dystrophy Management
- arxiv url: http://arxiv.org/abs/2411.14923v1
- Date: Fri, 22 Nov 2024 13:27:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 18:36:32.983145
- Title: Predictive Modeling For Real-Time Personalized Health Monitoring in Muscular Dystrophy Management
- Title(参考訳): 筋ジストロフィー管理におけるリアルタイム健康モニタリングの予測モデル
- Authors: Mohammed Akkaoui,
- Abstract要約: 本稿では,筋ジストロフィー管理を支援するモノのインターネットシステムを提案する。
治療戦略を強化し、患者が自分の状態をよりよく管理し、医療専門家に彼らの管理決定への信頼を高めることを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Muscular Dystrophy is a group of genetic disorders that progressively affect the strength and functioning of muscles, thereby affecting millions of people worldwide. The lifetime nature of MD requires continuous follow-up care due to its progressive nature. This conceptual paper proposes an Internet of Things-based system to support the management of MD through remote, multi-dimensional monitoring of patients in order to provide real-time health status updates. Traditional methods have failed to give actionable data in real time, hence denying healthcare providers the opportunity to make evidence-based decisions. Technology-driven approaches are urgently needed to provide deep insights into disease progression and patient health. It aims to enhance treatment strategies, enabling patients to better manage their condition and giving healthcare professionals more confidence in their management decisions.
- Abstract(参考訳): 筋ジストロフィー(英: Muscular Dystrophy)は、筋肉の強度と機能に徐々に影響を及ぼし、世界中の何百万人もの人に影響を及ぼす遺伝性疾患である。
MDの寿命特性は、その進行的な性質のために継続的なフォローアップケアを必要とする。
本稿では,患者の遠隔的多次元モニタリングを通じてMD管理を支援するモノのインターネット(Internet of Things)システムを提案する。
従来の方法では、リアルタイムに実行可能なデータを提供しられなかったため、医療提供者が証拠に基づく意思決定を行う機会を否定している。
技術主導のアプローチは、疾患の進行と患者の健康に関する深い洞察を提供するために緊急に必要である。
治療戦略を強化し、患者が自分の状態をよりよく管理し、医療専門家に彼らの管理決定への信頼を高めることを目的としている。
関連論文リスト
- Advancing Parkinson's Disease Progression Prediction: Comparing Long Short-Term Memory Networks and Kolmogorov-Arnold Networks [1.9022387674252539]
パーキンソン病(英: Parkinson's Disease、PD)は、運動機能と非運動機能を障害する変性神経疾患である。
しかし、現在の診断方法は、しばしば費用がかかり、時間がかかり、専門的な機器や専門知識が必要になる。
本研究では,回帰手法,LSTM(Long Short-Term Memory)ネットワーク,KAN(Kolmogorov Arnold Networks)を用いてPD進行を予測する革新的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-12-30T06:36:05Z) - A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions [23.36640449085249]
医学大言語モデル(Med-LLMs)の最近の進歩を辿る。
The wide-ranging application of Med-LLMs are investigated across various health domain。
公平性、説明責任、プライバシー、堅牢性を保証する上での課題について議論する。
論文 参考訳(メタデータ) (2024-06-06T03:15:13Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
既存のモニタリングアプローチは、医療機器が複数の健康指標を同時に追跡するという前提で設計されている。
これは、その範囲内で関連するすべての健康値を報告し、過剰なリソース使用と外部データの収集をもたらす可能性があることを意味します。
最適なモニタリング性能とコスト効率のバランスをとるための動的アクティビティ・アウェアヘルスモニタリング戦略(DActAHM)を提案する。
論文 参考訳(メタデータ) (2024-01-19T16:26:35Z) - Adaptive Multi-Agent Deep Reinforcement Learning for Timely Healthcare Interventions [17.405080523382235]
マルチエージェント深部強化学習(DRL)を用いた新しいAI駆動型患者監視フレームワークを提案する。
アプローチでは複数の学習エージェントをデプロイし,心拍数,呼吸量,温度などの生理的特徴をモニタする。
提案する多エージェントDRLフレームワークの性能を,2つのデータセットから実世界の生理・運動データを用いて評価した。
論文 参考訳(メタデータ) (2023-09-20T00:42:08Z) - Deep Attention Q-Network for Personalized Treatment Recommendation [1.6631602844999724]
パーソナライズされた治療レコメンデーションのためのDeep Attention Q-Networkを提案する。
深い強化学習フレームワーク内のTransformerアーキテクチャは、過去のすべての患者の観察を効率的に取り入れている。
実世界の敗血症と急性低血圧コホートにおけるモデルの評価を行い、最先端モデルよりも優れていることを示した。
論文 参考訳(メタデータ) (2023-07-04T07:00:19Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
医療におけるプライバシー保護機械学習(PPML)に関する最近の文献を概観する。
プライバシ保護トレーニングと推論・アズ・ア・サービスに重点を置いています。
このレビューの目的は、医療におけるプライベートかつ効率的なMLモデルの開発をガイドすることである。
論文 参考訳(メタデータ) (2023-03-27T19:20:51Z) - Safe AI for health and beyond -- Monitoring to transform a health
service [51.8524501805308]
機械学習アルゴリズムの出力を監視するために必要なインフラストラクチャを評価する。
モデルのモニタリングと更新の例を示す2つのシナリオを提示します。
論文 参考訳(メタデータ) (2023-03-02T17:27:45Z) - Remote patient monitoring using artificial intelligence: Current state,
applications, and challenges [13.516357215412024]
本研究の目的は,導入技術,RPMに対するAIの影響,AI対応RPMの課題と動向など,RPMシステムの総合的なレビューを行うことである。
RPMにおけるAIの役割は、身体活動の分類から慢性疾患のモニタリング、緊急時におけるバイタルサインのモニタリングまで様々である。
このレビュー結果は、AI対応のRPMアーキテクチャが医療モニタリングアプリケーションを変革したことを示している。
論文 参考訳(メタデータ) (2023-01-19T06:22:14Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
本稿では,パーキンソン病患者のmPowerデータセットを用いて薬剤状態を予測する方法を提案する。
提案手法は,3つの薬物状態を客観的に予測する上で有望な結果を示す。
論文 参考訳(メタデータ) (2022-07-26T02:08:08Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
医用画像AIの堅牢性とデータ効率を向上させるための統一表現学習戦略であるREMEDISを提案する。
様々な医療画像タスクを研究し, 振り返りデータを用いて3つの現実的な応用シナリオをシミュレートする。
論文 参考訳(メタデータ) (2022-05-19T17:34:18Z) - Optimal discharge of patients from intensive care via a data-driven
policy learning framework [58.720142291102135]
退院課題は、退院期間の短縮と退院決定後の退院や死亡のリスクとの不確実なトレードオフに対処することが重要である。
本研究は、このトレードオフを捉えるためのエンドツーエンドの汎用フレームワークを導入し、最適放電タイミング決定を推奨する。
データ駆動型アプローチは、患者の生理的状態を捉えた同種で離散的な状態空間表現を導出するために用いられる。
論文 参考訳(メタデータ) (2021-12-17T04:39:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。