Adaptive Intelligence: leveraging insights from adaptive behavior in animals to build flexible AI systems
- URL: http://arxiv.org/abs/2411.15234v1
- Date: Thu, 21 Nov 2024 20:26:29 GMT
- Title: Adaptive Intelligence: leveraging insights from adaptive behavior in animals to build flexible AI systems
- Authors: Mackenzie Weygandt Mathis,
- Abstract summary: I will review the behavioral and neural foundations of adaptive biological intelligence, the parallel progress in AI, and explore brain-inspired approaches for building more adaptive algorithms.
The next frontier is to go beyond traditional AI to develop "adaptive intelligence," defined here as harnessing insights from biological intelligence to build agents that can learn online, generalize, and rapidly adapt to changes in their environment.
- Score: 0.0
- License:
- Abstract: Biological intelligence is inherently adaptive -- animals continually adjust their actions based on environmental feedback. However, creating adaptive artificial intelligence (AI) remains a major challenge. The next frontier is to go beyond traditional AI to develop "adaptive intelligence," defined here as harnessing insights from biological intelligence to build agents that can learn online, generalize, and rapidly adapt to changes in their environment. Recent advances in neuroscience offer inspiration through studies that increasingly focus on how animals naturally learn and adapt their world models. In this Perspective, I will review the behavioral and neural foundations of adaptive biological intelligence, the parallel progress in AI, and explore brain-inspired approaches for building more adaptive algorithms.
Related papers
- Bio-inspired AI: Integrating Biological Complexity into Artificial Intelligence [0.0]
The pursuit of creating artificial intelligence mirrors our longstanding fascination with understanding our own intelligence.
Recent advances in AI hold promise, but singular approaches often fall short in capturing the essence of intelligence.
This paper explores how fundamental principles from biological computation can guide the design of truly intelligent systems.
arXiv Detail & Related papers (2024-11-22T02:55:39Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Bridging Neuroscience and AI: Environmental Enrichment as a Model for Forward Knowledge Transfer [0.0]
We suggest that environmental enrichment (EE) can be used as a biological model for studying forward transfer.
EE refers to animal studies that enhance cognitive, social, motor, and sensory stimulation.
We discuss how artificial neural networks (ANNs) can be used to predict neural changes after enriched experiences.
arXiv Detail & Related papers (2024-05-12T14:33:50Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
The intersection of Artificial Intelligence (AI) and neuroscience in Explainable AI (XAI) is pivotal for enhancing transparency and interpretability in complex decision-making processes.
This paper explores the evolution of XAI methodologies, ranging from feature-based to human-centric approaches.
The challenges in achieving explainability in generative models, ensuring responsible AI practices, and addressing ethical implications are discussed.
arXiv Detail & Related papers (2024-02-07T14:09:11Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Towards the Neuroevolution of Low-level Artificial General Intelligence [5.2611228017034435]
We argue that the search for Artificial General Intelligence (AGI) should start from a much lower level than human-level intelligence.
Our hypothesis is that learning occurs through sensory feedback when an agent acts in an environment.
We evaluate a method to evolve a biologically-inspired artificial neural network that learns from environment reactions.
arXiv Detail & Related papers (2022-07-27T15:30:50Z) - The Introspective Agent: Interdependence of Strategy, Physiology, and
Sensing for Embodied Agents [51.94554095091305]
We argue for an introspective agent, which considers its own abilities in the context of its environment.
Just as in nature, we hope to reframe strategy as one tool, among many, to succeed in an environment.
arXiv Detail & Related papers (2022-01-02T20:14:01Z) - Conscious AI [6.061244362532694]
Recent advances in artificial intelligence have achieved human-scale speed and accuracy for classification tasks.
Current systems do not need to be conscious to recognize patterns and classify them.
For AI to progress to more complicated tasks requiring intuition and empathy, it must develop capabilities such as metathinking, creativity, and empathy akin to human self-awareness or consciousness.
arXiv Detail & Related papers (2021-05-12T15:53:44Z) - Embodied Intelligence via Learning and Evolution [92.26791530545479]
We show that environmental complexity fosters the evolution of morphological intelligence.
We also show that evolution rapidly selects morphologies that learn faster.
Our experiments suggest a mechanistic basis for both the Baldwin effect and the emergence of morphological intelligence.
arXiv Detail & Related papers (2021-02-03T18:58:31Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.