論文の概要: AI Foundation Models for Wearable Movement Data in Mental Health Research
- arxiv url: http://arxiv.org/abs/2411.15240v3
- Date: Tue, 14 Jan 2025 04:10:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:26:08.508670
- Title: AI Foundation Models for Wearable Movement Data in Mental Health Research
- Title(参考訳): メンタルヘルス研究におけるウェアラブル運動データのためのAI基礎モデル
- Authors: Franklin Y. Ruan, Aiwei Zhang, Jenny Y. Oh, SouYoung Jin, Nicholas C. Jacobson,
- Abstract要約: 本稿では,時系列ウェアラブル運動データを対象とした最初のオープンソース基盤モデルであるPretrained Actigraphy Transformer (PAT)を紹介する。
PATは、いくつかのメンタルヘルス予測タスクで最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 2.015440876410741
- License:
- Abstract: Pretrained foundation models and transformer architectures have driven the success of large language models (LLMs) and other modern AI breakthroughs. However, similar advancements in health data modeling remain limited due to the need for innovative adaptations. Wearable movement data offers a valuable avenue for exploration, as it's a core feature in nearly all commercial smartwatches, well established in clinical and mental health research, and the sequential nature of the data shares similarities to language. We introduce the Pretrained Actigraphy Transformer (PAT), the first open source foundation model designed for time-series wearable movement data. Leveraging transformer-based architectures and novel techniques, such as patch embeddings, and pretraining on data from 29,307 participants in a national U.S. sample, PAT achieves state-of-the-art performance in several mental health prediction tasks. PAT is also lightweight and easily interpretable, making it a robust tool for mental health research. GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/
- Abstract(参考訳): 事前訓練された基礎モデルとトランスフォーマーアーキテクチャは、大規模言語モデル(LLM)や他の現代的なAIブレークスルーの成功を後押ししている。
しかし、革新的適応の必要性から、同様の健康データモデリングの進歩は依然として限られている。
ウェアラブルムーブメントのデータは、ほぼすべての商用スマートウォッチの中核的な機能であり、臨床と精神の健康研究でよく確立されているため、探索に有用な手段を提供する。
本稿では,時系列ウェアラブル運動データを対象とした最初のオープンソース基盤モデルであるPretrained Actigraphy Transformer (PAT)を紹介する。
トランスフォーマーベースのアーキテクチャと、パッチの埋め込みのような新しい技術を活用し、全米のサンプル29,307人のデータに基づいて事前訓練することで、PATはいくつかのメンタルヘルス予測タスクで最先端のパフォーマンスを達成する。
PATは軽量で容易に解釈できるので、メンタルヘルス研究のための堅牢なツールである。
GitHub: https://github.com/njacobsonlab/Pretrained-Actigraphy-Transformer/
関連論文リスト
- LoGra-Med: Long Context Multi-Graph Alignment for Medical Vision-Language Model [55.80651780294357]
最新の医療用マルチモーダル大規模言語モデル(med-MLLM)は、事前訓練において命令追従データを活用する。
LoGra-Medは新しいマルチグラフアライメントアルゴリズムで、画像のモダリティ、会話ベースの記述、拡張キャプション間でのトリプルト相関を強制する。
以上の結果から,LoGra-Medは医療用VQAの600K画像テキスト対に対してLAVA-Medと一致し,その10%でトレーニングした場合に有意に優れていた。
論文 参考訳(メタデータ) (2024-10-03T15:52:03Z) - BISeizuRe: BERT-Inspired Seizure Data Representation to Improve Epilepsy Monitoring [13.35453284825286]
本研究では,BERTモデルを用いた脳波による発作検出の新しい手法を提案する。
BENDRは2段階のトレーニングプロセス、事前トレーニング、微調整を行う。
最適化されたモデルでは性能が大幅に向上し、0.23 FP/h、2.5$times$はベースラインモデルよりも低く、感度は低いが許容できる。
論文 参考訳(メタデータ) (2024-06-27T14:09:10Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
本稿では,患者の電子カルテに人工的な臨床ノートを作成するための新しいデータ拡張手法を提案する。
生成言語モデルGPT-2を微調整し、ラベル付きテキストを元のトレーニングデータで合成する。
今回,最も多い患者,すなわち30日間の寛解率について検討した。
論文 参考訳(メタデータ) (2022-11-13T01:07:23Z) - Unsupervised pre-training of graph transformers on patient population
graphs [48.02011627390706]
異種臨床データを扱うグラフ変換器を用いたネットワークを提案する。
自己教師型, 移動学習環境において, 事前学習方式の利点を示す。
論文 参考訳(メタデータ) (2022-07-21T16:59:09Z) - Unsupervised Pre-Training on Patient Population Graphs for Patient-Level
Predictions [48.02011627390706]
プレトレーニングは、コンピュータビジョン(CV)、自然言語処理(NLP)、医療画像など、機械学習のさまざまな分野で成功している。
本稿では,患者結果の予測のために,教師なし事前学習を異種マルチモーダルEHRデータに適用する。
提案手法は,人口レベルでのデータモデリングに有効であることがわかった。
論文 参考訳(メタデータ) (2022-03-23T17:59:45Z) - Mythological Medical Machine Learning: Boosting the Performance of a
Deep Learning Medical Data Classifier Using Realistic Physiological Models [0.0]
PTSDにより,T-wave Alternans (TWA) を含む人工心電図を180,000個生成した。
7万人以上の患者に25種類のリズムを分類するよう訓練されたディープニューラルネットワーク(DNN)は、出力層をバイナリクラスに修正した。
最も優れた手法は、事前訓練された不整脈DNN、人工データ、およびPTSD関連心電図データを用いて、両方の転送学習ステップを実行することで見出された。
論文 参考訳(メタデータ) (2021-12-28T17:55:37Z) - TrialGraph: Machine Intelligence Enabled Insight from Graph Modelling of
Clinical Trials [0.0]
我々はCT.gov, AACT, TrialTroveデータベースから収集した治験データセット(n=1191臨床試験、100万人の患者を代表する)を紹介する。
次に,グラフ機械学習アルゴリズムの数学的基礎と実装について詳述する。
我々はこれらのモデルを用いて、疾患、既往の医療状況、治療に関する情報を与えられた臨床試験の副作用情報を予測する訓練を行った。
論文 参考訳(メタデータ) (2021-12-15T15:36:57Z) - Does BERT Pretrained on Clinical Notes Reveal Sensitive Data? [70.3631443249802]
我々は、トレーニングされたBERTからPersonal Health Informationを復元するためのアプローチのバッテリーを設計する。
具体的には,患者の名前と関連した状態の回復を試みている。
簡単な探索法では,MIMIC-IIIコーパス上で訓練されたBERTから機密情報を有意に抽出できないことがわかった。
論文 参考訳(メタデータ) (2021-04-15T20:40:05Z) - Using Convolutional Variational Autoencoders to Predict Post-Trauma
Health Outcomes from Actigraphy Data [4.668948267866486]
うつ病と外傷後ストレス障害(PTSD)は、外傷性事象に関連する精神疾患である。
本研究は,調査用スマートウォッチを装着した1113名の被験者を対象に,ロコモター活動を用いた。
畳み込み変分オートエンコーダ(VAE)アーキテクチャは、アクティグラフィーデータから教師なしの特徴抽出に用いられた。
論文 参考訳(メタデータ) (2020-11-14T22:48:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。