CADS: A Comprehensive Anatomical Dataset and Segmentation for Whole-Body Anatomy in Computed Tomography
- URL: http://arxiv.org/abs/2507.22953v1
- Date: Tue, 29 Jul 2025 19:58:32 GMT
- Title: CADS: A Comprehensive Anatomical Dataset and Segmentation for Whole-Body Anatomy in Computed Tomography
- Authors: Murong Xu, Tamaz Amiranashvili, Fernando Navarro, Maksym Fritsak, Ibrahim Ethem Hamamci, Suprosanna Shit, Bastian Wittmann, Sezgin Er, Sebastian M. Christ, Ezequiel de la Rosa, Julian Deseoe, Robert Graf, Hendrik Möller, Anjany Sekuboyina, Jan C. Peeken, Sven Becker, Giulia Baldini, Johannes Haubold, Felix Nensa, René Hosch, Nikhil Mirajkar, Saad Khalid, Stefan Zachow, Marc-André Weber, Georg Langs, Jakob Wasserthal, Mehmet Kemal Ozdemir, Andrey Fedorov, Ron Kikinis, Stephanie Tanadini-Lang, Jan S. Kirschke, Stephanie E. Combs, Bjoern Menze,
- Abstract summary: We present CADS, an open-source framework that prioritizes the systematic integration, standardization, and labeling of heterogeneous data sources for whole-body CT segmentation.<n>At its core is a large-scale dataset of 22,022 CT volumes with complete annotations for 167 anatomical structures.<n>Through comprehensive evaluation across 18 public datasets and an independent real-world hospital cohort, we demonstrate advantages over SoTA approaches.
- Score: 27.1055374364626
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate delineation of anatomical structures in volumetric CT scans is crucial for diagnosis and treatment planning. While AI has advanced automated segmentation, current approaches typically target individual structures, creating a fragmented landscape of incompatible models with varying performance and disparate evaluation protocols. Foundational segmentation models address these limitations by providing a holistic anatomical view through a single model. Yet, robust clinical deployment demands comprehensive training data, which is lacking in existing whole-body approaches, both in terms of data heterogeneity and, more importantly, anatomical coverage. In this work, rather than pursuing incremental optimizations in model architecture, we present CADS, an open-source framework that prioritizes the systematic integration, standardization, and labeling of heterogeneous data sources for whole-body CT segmentation. At its core is a large-scale dataset of 22,022 CT volumes with complete annotations for 167 anatomical structures, representing a significant advancement in both scale and coverage, with 18 times more scans than existing collections and 60% more distinct anatomical targets. Building on this diverse dataset, we develop the CADS-model using established architectures for accessible and automated full-body CT segmentation. Through comprehensive evaluation across 18 public datasets and an independent real-world hospital cohort, we demonstrate advantages over SoTA approaches. Notably, thorough testing of the model's performance in segmentation tasks from radiation oncology validates its direct utility for clinical interventions. By making our large-scale dataset, our segmentation models, and our clinical software tool publicly available, we aim to advance robust AI solutions in radiology and make comprehensive anatomical analysis accessible to clinicians and researchers alike.
Related papers
- GRASPing Anatomy to Improve Pathology Segmentation [67.98147643529309]
We introduce GRASP, a modular plug-and-play framework that enhances pathology segmentation models.<n>We evaluate GRASP on two PET/CT datasets, conduct systematic ablation studies, and investigate the framework's inner workings.
arXiv Detail & Related papers (2025-08-05T12:26:36Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
There is no fully annotated CT dataset with all anatomies delineated for training.<n>We propose a novel continual learning-driven CT model that can segment complete anatomies.<n>Our single unified CT segmentation model, CL-Net, can highly accurately segment a clinically comprehensive set of 235 fine-grained whole-body anatomies.
arXiv Detail & Related papers (2025-03-16T23:55:02Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challenge introduced the first dataset of 100 CTA volumes annotated for 23 clinically relevant aortic branches and zones.<n>This paper presents the challenge design, dataset details, evaluation metrics, and an in-depth analysis of the top-performing algorithms.
arXiv Detail & Related papers (2025-02-07T21:09:05Z) - Optimized Vessel Segmentation: A Structure-Agnostic Approach with Small Vessel Enhancement and Morphological Correction [7.882674026364302]
We propose a structure-agnostic approach incorporating small vessel enhancement and morphological correction for multi-modality vessel segmentation.
Our approach achieves superior segmentation accuracy, generalization, and a 34.6% improvement in connectivity, underscoring its clinical potential.
arXiv Detail & Related papers (2024-11-22T08:38:30Z) - TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI [59.86827659781022]
A nnU-Net model (TotalSegmentator) was trained on MRI and segment 80atomic structures.<n>Dice scores were calculated between the predicted segmentations and expert reference standard segmentations to evaluate model performance.<n>Open-source, easy-to-use model allows for automatic, robust segmentation of 80 structures.
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - AG-CRC: Anatomy-Guided Colorectal Cancer Segmentation in CT with
Imperfect Anatomical Knowledge [9.961742312147674]
We develop a novel Anatomy-Guided segmentation framework to exploit the auto-generated organ masks.
We extensively evaluate the proposed method on two CRC segmentation datasets.
arXiv Detail & Related papers (2023-10-07T03:22:06Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
We generate a dataset of whole-body CT scans with $142$ voxel-level labels for 533 volumes providing comprehensive anatomical coverage.
Our proposed procedure does not rely on manual annotation during the label aggregation stage.
We release our trained unified anatomical segmentation model capable of predicting $142$ anatomical structures on CT data.
arXiv Detail & Related papers (2023-07-25T09:48:13Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.