Mera: Memory Reduction and Acceleration for Quantum Circuit Simulation via Redundancy Exploration
- URL: http://arxiv.org/abs/2411.15332v1
- Date: Fri, 22 Nov 2024 20:07:31 GMT
- Title: Mera: Memory Reduction and Acceleration for Quantum Circuit Simulation via Redundancy Exploration
- Authors: Yuhong Song, Edwin Hsing-Mean Sha, Longshan Xu, Qingfeng Zhuge, Zili Shao,
- Abstract summary: We propose a multi-level optimization, namely Mera, to reduce memory usage and accelerate simulation.
For a large number of sparse quantum gates, we propose two compressed structures for low-level full-state simulation.
Experiments show that our compressed structures increase the number of qubits from 17 to 35, and achieve up to 6.9 times acceleration for QNN.
- Score: 4.271968023823568
- License:
- Abstract: With the development of quantum computing, quantum processor demonstrates the potential supremacy in specific applications, such as Grovers database search and popular quantum neural networks (QNNs). For better calibrating the quantum algorithms and machines, quantum circuit simulation on classical computers becomes crucial. However, as the number of quantum bits (qubits) increases, the memory requirement grows exponentially. In order to reduce memory usage and accelerate simulation, we propose a multi-level optimization, namely Mera, by exploring memory and computation redundancy. First, for a large number of sparse quantum gates, we propose two compressed structures for low-level full-state simulation. The corresponding gate operations are designed for practical implementations, which are relieved from the longtime compression and decompression. Second, for the dense Hadamard gate, which is definitely used to construct the superposition, we design a customized structure for significant memory saving as a regularity-oriented simulation. Meanwhile, an ondemand amplitude updating process is optimized for execution acceleration. Experiments show that our compressed structures increase the number of qubits from 17 to 35, and achieve up to 6.9 times acceleration for QNN.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Approximate encoding of quantum states using shallow circuits [0.0]
A common requirement of quantum simulations and algorithms is the preparation of complex states through sequences of 2-qubit gates.
Here, we aim at creating an approximate encoding of the target state using a limited number of gates.
Our work offers a universal method to prepare target states using local gates and represents a significant improvement over known strategies.
arXiv Detail & Related papers (2022-06-30T18:00:04Z) - Optimization of Quantum Read-Only Memory Circuits [5.486046841722322]
In quantum machine learning applications, a quantum memory can simplify the data loading process and potentially accelerate the learning task.
Quantum Read Only Memory (QROM) scale exponentially with the number of address lines making them impractical in state-of-the-art Noisy Intermediate-Scale Quantum (NISQ) computers beyond 4-bit addresses.
We propose techniques such as, predecoding logic and qubit reset to reduce the depth and gate count of QROM circuits to target wider address ranges such as, 8-bits.
arXiv Detail & Related papers (2022-04-06T21:23:31Z) - A quantum processor based on coherent transport of entangled atom arrays [44.62475518267084]
We show a quantum processor with dynamic, nonlocal connectivity, in which entangled qubits are coherently transported in a highly parallel manner.
We use this architecture to realize programmable generation of entangled graph states such as cluster states and a 7-qubit Steane code state.
arXiv Detail & Related papers (2021-12-07T19:00:00Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Leveraging state sparsity for more efficient quantum simulations [1.52292571922932]
We introduce a new simulation method that exploits this sparsity to reduce memory usage and simulation runtime.
Our prototype implementation includes optimizations such as gate (re)scheduling, which amortizes data structure accesses and reduces memory usage.
Our simulator successfully runs a factoring instance of a 20-bit number using 102 qubits, and elliptic curve discrete logarithm over a 10-bit curve with 110 qubits.
arXiv Detail & Related papers (2021-05-04T14:42:32Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Quantum Search for Scaled Hash Function Preimages [1.3299507495084417]
We present the implementation of Grover's algorithm in a quantum simulator to perform a quantum search for preimages of two scaled hash functions.
We show that strategies that suggest a shortcut based on sampling the quantum register after a few steps of Grover's algorithm can only provide some marginal practical advantage in terms of error mitigation.
arXiv Detail & Related papers (2020-09-01T18:00:02Z) - Faster Schr\"odinger-style simulation of quantum circuits [2.0940228639403156]
Recent demonstrations of superconducting quantum computers by Google and IBM fueled new research in quantum algorithms.
We advance Schr"odinger-style simulation of quantum circuits that is useful standalone and as a building block in layered simulation algorithms.
arXiv Detail & Related papers (2020-08-01T08:47:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.