Multi-scale Cascaded Large-Model for Whole-body ROI Segmentation
- URL: http://arxiv.org/abs/2411.15526v1
- Date: Sat, 23 Nov 2024 11:39:06 GMT
- Title: Multi-scale Cascaded Large-Model for Whole-body ROI Segmentation
- Authors: Rui Hao, Dayu Tan, Yansen Su, Chunhou Zheng,
- Abstract summary: We propose an innovative cascaded network architecture called the Multi-scale Cascaded Fusing Network (MCFNet)
MCFNet effectively captures complex multi-scale and multi-resolution features.
We conduct experiments using the A6000 GPU on diverse datasets from 671 patients, including 36,131 image-mask pairs.
- Score: 5.430156054316826
- License:
- Abstract: Organs-at-risk segmentation is critical for ensuring the safety and precision of radiotherapy and surgical procedures. However, existing methods for organs-at-risk image segmentation often suffer from uncertainties and biases in target selection, as well as insufficient model validation experiments, limiting their generality and reliability in practical applications. To address these issues, we propose an innovative cascaded network architecture called the Multi-scale Cascaded Fusing Network (MCFNet), which effectively captures complex multi-scale and multi-resolution features. MCFNet includes a Sharp Extraction Backbone and a Flexible Connection Backbone, which respectively enhance feature extraction in the downsampling and skip-connection stages. This design not only improves segmentation accuracy but also ensures computational efficiency, enabling precise detail capture even in low-resolution images. We conduct experiments using the A6000 GPU on diverse datasets from 671 patients, including 36,131 image-mask pairs across 10 different datasets. MCFNet demonstrates strong robustness, performing consistently well across 10 datasets. Additionally, MCFNet exhibits excellent generalizability, maintaining high accuracy in different clinical scenarios. We also introduce an adaptive loss aggregation strategy to further optimize the model training process, improving both segmentation accuracy and efficiency. Through extensive validation, MCFNet demonstrates superior performance compared to existing methods, providing more reliable image-guided support. Our solution aims to significantly improve the precision and safety of radiotherapy and surgical procedures, advancing personalized treatment. The code has been made available on GitHub:https://github.com/Henry991115/MCFNet.
Related papers
- PMFSNet: Polarized Multi-scale Feature Self-attention Network For
Lightweight Medical Image Segmentation [6.134314911212846]
Current state-of-the-art medical image segmentation methods prioritize accuracy but often at the expense of increased computational demands and larger model sizes.
We propose PMFSNet, a novel medical imaging segmentation model that balances global local feature processing while avoiding computational redundancy.
It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies.
arXiv Detail & Related papers (2024-01-15T10:26:47Z) - BRAU-Net++: U-Shaped Hybrid CNN-Transformer Network for Medical Image Segmentation [11.986549780782724]
We propose a hybrid yet effective CNN-Transformer network, named BRAU-Net++, for an accurate medical image segmentation task.
Specifically, BRAU-Net++ uses bi-level routing attention as the core building block to design our u-shaped encoder-decoder structure.
Our proposed approach surpasses other state-of-the-art methods including its baseline: BRAU-Net.
arXiv Detail & Related papers (2024-01-01T10:49:09Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Scale-Space Hypernetworks for Efficient Biomedical Imaging [0.0]
We introduce Scale-Space HyperNetworks (SSHN), a method that learns a spectrum of CNNs with varying internal rescaling factors.
SSHN consistently provides a better accuracy-efficiency trade-off at a fraction of the training cost.
arXiv Detail & Related papers (2023-04-11T18:38:57Z) - GMSRF-Net: An improved generalizability with global multi-scale residual
fusion network for polyp segmentation [12.086664133486144]
Colonoscopy is a gold standard procedure but is highly operator-dependent.
Efforts have been made to automate the detection and segmentation of polyps, a precancerous precursor, to effectively minimize missed rate.
Computer-aided polyp segmentation systems actuated by encoder-decoder have achieved high performance in terms of accuracy.
arXiv Detail & Related papers (2021-11-20T15:41:59Z) - MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image
Segmentation [10.979393806308648]
We propose a novel architecture called MSRF-Net, which is specially designed for medical image segmentation tasks.
MSRF-Net is able to exchange multi-scale features of varying receptive fields using a dual-scale dense fusion block (DSDF)
Our DSDF block can exchange information rigorously across two different resolution scales, and our MSRF sub-network uses multiple DSDF blocks in sequence to perform multi-scale fusion.
arXiv Detail & Related papers (2021-05-16T15:19:56Z) - Brain Image Synthesis with Unsupervised Multivariate Canonical
CSC$\ell_4$Net [122.8907826672382]
We propose to learn dedicated features that cross both intre- and intra-modal variations using a novel CSC$ell_4$Net.
arXiv Detail & Related papers (2021-03-22T05:19:40Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.