論文の概要: Do LLMs Agree on the Creativity Evaluation of Alternative Uses?
- arxiv url: http://arxiv.org/abs/2411.15560v2
- Date: Tue, 26 Nov 2024 09:25:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:37:21.352062
- Title: Do LLMs Agree on the Creativity Evaluation of Alternative Uses?
- Title(参考訳): LLMs Agree on the Creativity Evaluation of Alternative Uses?
- Authors: Abdullah Al Rabeyah, Fabrício Góes, Marco Volpe, Talles Medeiros,
- Abstract要約: 本稿では,大規模言語モデル (LLM) が,代替利用テスト (AUT) への対応において,創造性を評価することに合意しているかどうかを検討する。
AUT応答のオラクルベンチマークセットを用いて、これらの出力を評価する4つの最先端LCMを実験した。
その結果、モデル間の高い合意が示され、スピアマンの相関はモデル全体で0.7以上、オラクルに関して0.77以上に達している。
- 参考スコア(独自算出の注目度): 0.4326762849037007
- License:
- Abstract: This paper investigates whether large language models (LLMs) show agreement in assessing creativity in responses to the Alternative Uses Test (AUT). While LLMs are increasingly used to evaluate creative content, previous studies have primarily focused on a single model assessing responses generated by the same model or humans. This paper explores whether LLMs can impartially and accurately evaluate creativity in outputs generated by both themselves and other models. Using an oracle benchmark set of AUT responses, categorized by creativity level (common, creative, and highly creative), we experiment with four state-of-the-art LLMs evaluating these outputs. We test both scoring and ranking methods and employ two evaluation settings (comprehensive and segmented) to examine if LLMs agree on the creativity evaluation of alternative uses. Results reveal high inter-model agreement, with Spearman correlations averaging above 0.7 across models and reaching over 0.77 with respect to the oracle, indicating a high level of agreement and validating the reliability of LLMs in creativity assessment of alternative uses. Notably, models do not favour their own responses, instead they provide similar creativity assessment scores or rankings for alternative uses generated by other models. These findings suggest that LLMs exhibit impartiality and high alignment in creativity evaluation, offering promising implications for their use in automated creativity assessment.
- Abstract(参考訳): 本稿では,大規模言語モデル (LLM) が, 代替利用テスト (AUT) への対応において, 創造性を評価できるかどうかを検討する。
LLMは、クリエイティブなコンテンツを評価するのにますます使われているが、以前の研究では、主に、同じモデルや人間が生成した応答を評価する単一のモデルに焦点を当ててきた。
本稿では,LLMが自己および他のモデルによって生成されるアウトプットの創造性を公平かつ正確に評価できるかどうかを考察する。
創造性レベル(共通の、創造的で、非常に創造的な)で分類されたAUT応答のオラクルベンチマークセットを使用して、これらのアウトプットを評価する4つの最先端のLCMを実験した。
評価法と評価法の両方を試行し、LLMが代替用途の創造性評価に同意するかどうかを検討するために2つの評価設定(包括的・分節的)を用いる。
その結果、モデル間の合意は高く、スピアマンの相関関係はモデル全体で平均0.7以上であり、オラクルに関して0.77以上に達し、高いレベルの合意を示し、代替用途の創造性評価においてLLMの信頼性を検証している。
特に、モデルは独自の反応を好まないが、他のモデルによって生成された代替用途に対して、同様の創造性評価スコアやランキングを提供する。
これらの結果から,LCMは創造性評価において公平性と高い整合性を示し,自動創造性評価に有効である可能性が示唆された。
関連論文リスト
- Diverging Preferences: When do Annotators Disagree and do Models Know? [92.24651142187989]
我々は,4つのハイレベルクラスにまたがる10のカテゴリにまたがる相違点の分類法を開発した。
意見の相違の大部分は、標準的な報酬モデリングアプローチに反対している。
本研究は,選好の変化を識別し,評価とトレーニングへの影響を緩和する手法を開発する。
論文 参考訳(メタデータ) (2024-10-18T17:32:22Z) - Leveraging LLMs for Dialogue Quality Measurement [27.046917937460798]
大規模言語モデル(LLM)は、NLPタスク全体で堅牢なゼロショットと少数ショットの機能を提供する。
モデルサイズ,文脈内例,選択手法などの操作要因を考察し,CoT推論とラベル抽出手法について検討する。
この結果から,適切な微調整と十分な推論能力を有するLCMを自動対話評価に活用できることが示唆された。
論文 参考訳(メタデータ) (2024-06-25T06:19:47Z) - Language Model Council: Democratically Benchmarking Foundation Models on Highly Subjective Tasks [3.58262772907022]
言語モデル協議会(LMC: Language Model Council)では、LLMのグループが協力してテストを作成し、それに反応し、お互いの反応を評価してランキングを作成する。
感情的インテリジェンスに関する詳細なケーススタディでは、対人対立に対するオープン・エンド・レスポンスにおいて、20の最近のLCMを相互にランク付けするために配置する。
以上の結果から, LMCは, より分離性が高く, より堅牢なランキングを作成でき, ユーザスタディにより, 個々のLCM審査員よりも人的評価に整合性があることが示唆された。
論文 参考訳(メタデータ) (2024-06-12T19:05:43Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
既存のパラダイムは、LLMの性能を評価するために、人間アノテーションまたはモデルベースの評価器のいずれかに依存している。
ピアレビュープロセスを通じてLLMを自動的に評価できる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-28T12:33:14Z) - Assessing and Understanding Creativity in Large Language Models [33.37237667182931]
本稿では,大規模言語モデル(LLM)における創造性レベルを評価するための効率的な枠組みを確立することを目的とする。
The Torrance Tests of Creative Thinking を用いて、7つのタスクにまたがる様々なLSMの創造的パフォーマンスを評価する。
LLMの創造性は、主に独創性に欠けるが、エラボレーションには優れていた。
論文 参考訳(メタデータ) (2024-01-23T05:19:47Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria [49.500322937449326]
MLLM(Multimodal large language model)は、AIアプリケーションの範囲を広げている。
既存のMLLMの自動評価手法は主にユーザエクスペリエンスを考慮せずにクエリを評価する場合に限られている。
本稿では,MLLM を判断基準として評価する MLLM の新しい評価パラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-23T12:04:25Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
我々は,命令追従出力の識別におけるLLM評価器の能力をテストするために,挑戦的なメタ評価ベンチマーク LLMBar を導入する。
異なる評価器がLLMBarに対して異なる性能を示し、最高の評価器でさえ改善の余地があることが判明した。
論文 参考訳(メタデータ) (2023-10-11T16:38:11Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。