論文の概要: Circuit design in biology and machine learning. II. Anomaly detection
- arxiv url: http://arxiv.org/abs/2411.15647v1
- Date: Sat, 23 Nov 2024 20:36:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:18:37.631692
- Title: Circuit design in biology and machine learning. II. Anomaly detection
- Title(参考訳): 生物学・機械学習における回路設計 II. 異常検出
- Authors: Steven A. Frank,
- Abstract要約: 異常検出は、生体システムが非定型的な環境入力を認識し反応する方法の理解を深める可能性がある。
本研究では,生体回路の概念的枠組みを構築するための機械学習技術を構築した。
私は、機械学習の概念にインスパイアされた最小限の回路に焦点を合わせ、セルスケールに縮小しました。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Anomaly detection is a well-established field in machine learning, identifying observations that deviate from typical patterns. The principles of anomaly detection could enhance our understanding of how biological systems recognize and respond to atypical environmental inputs. However, this approach has received limited attention in analyses of cellular and physiological circuits. This study builds on machine learning techniques -- such as dimensionality reduction, boosted decision trees, and anomaly classification -- to develop a conceptual framework for biological circuits. One problem is that machine learning circuits tend to be unrealistically large for use by cellular and physiological systems. I therefore focus on minimal circuits inspired by machine learning concepts, reduced to cellular scale. Through illustrative models, I demonstrate that small circuits can provide useful classification of anomalies. The analysis also shows how principles from machine learning -- such as temporal and atemporal anomaly detection, multivariate signal integration, and hierarchical decision-making cascades -- can inform hypotheses about the design and evolution of cellular circuits. This interdisciplinary approach enhances our understanding of cellular circuits and highlights the universal nature of computational strategies across biological and artificial systems.
- Abstract(参考訳): 異常検出は機械学習において確立された分野であり、典型的なパターンから逸脱する観察を識別する。
異常検出の原理は、生体システムが非定型的な環境入力を認識し反応する方法の理解を深める可能性がある。
しかし、このアプローチは細胞回路や生理回路の分析において限定的な注目を集めている。
本研究は, 生体回路の概念的枠組みを開発するために, 次元減少, 決定木の増加, 異常分類などの機械学習技術を構築した。
1つの問題は、機械学習回路が細胞や生理システムで使われるために非現実的に大きくなる傾向があることである。
そこで私は、機械学習の概念にインスパイアされた最小限の回路に焦点を合わせ、セルスケールに縮小した。
図形モデルを用いて,小型回路が異常の分類に有用であることを実証する。
この分析はまた、時間的および時間的異常検出、多変量信号の統合、階層的な決定カスケードといった機械学習の原則が、セル回路の設計と進化に関する仮説をどう伝えるかを示している。
この学際的アプローチは、細胞回路の理解を高め、生物学的および人工システムにおける計算戦略の普遍的な性質を強調する。
関連論文リスト
- Deep Latent Variable Modeling of Physiological Signals [0.8702432681310401]
潜時変動モデルを用いた生理モニタリングに関する高次元問題について検討する。
まず、光学的に得られた信号を入力として、心の電気波形を生成するための新しい状態空間モデルを提案する。
次に,確率的グラフィカルモデルの強みと深い敵対学習を組み合わせた脳信号モデリング手法を提案する。
第3に,生理的尺度と行動の合同モデリングのための枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:07:33Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
バイオプルーシブル・クレジット・アサインメントは、事実上あらゆる学習条件と互換性があり、エネルギー効率が高い。
本稿では,人工ニューラルネットワークにおける信用代入の生体評価可能なルールをモデル化する,いくつかの重要なアルゴリズムについて検討する。
我々は,このようなアルゴリズムを実用アプリケーションでより有用にするためには,今後の課題に対処する必要があることを論じる。
論文 参考訳(メタデータ) (2024-02-16T18:05:09Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
哺乳類網膜で観察される生体受容野を,深部核が効果的に複製していることを示す証拠を提示する。
生体受容の分野からインスピレーションを得る手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T18:06:22Z) - Let's do the time-warp-attend: Learning topological invariants of dynamical systems [3.9735602856280132]
本稿では、動的状態の分類と分岐境界の特徴付けのための、データ駆動型、物理的にインフォームドされたディープラーニングフレームワークを提案する。
超臨界ホップ分岐のパラダイム的ケースに着目し、様々な応用の周期的ダイナミクスをモデル化する。
本手法は, 広範囲な力学系の定性的・長期的挙動に関する貴重な知見を提供し, 大規模物理・生物系における分岐や破滅的な遷移を検出する。
論文 参考訳(メタデータ) (2023-12-14T18:57:16Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
研究結果を複製するという課題は、分子生物学の分野に重大な障害をもたらしている。
まず、この目的に向けた最初のステップとして、ProBioという名前の包括的なマルチモーダルデータセットをキュレートする。
次に、透明なソリューショントラッキングとマルチモーダルなアクション認識という2つの挑戦的なベンチマークを考案し、BioLab設定におけるアクティビティ理解に関連する特徴と難しさを強調した。
論文 参考訳(メタデータ) (2023-11-01T14:44:01Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Representation Learning for Networks in Biology and Medicine:
Advancements, Challenges, and Opportunities [18.434430658837258]
我々は,ネットワークを用いたモデリング,分析,学習への表現学習技術の急速な拡大を目の当たりにした。
本論では,ネットワーク生物学と医学の長年の原則が,表現学習の概念的基盤を提供できるという見解を述べる。
位相的特徴を利用してネットワークをコンパクトなベクトル空間に埋め込むアルゴリズムアプローチのスペクトルを合成する。
論文 参考訳(メタデータ) (2021-04-11T00:20:00Z) - Neural Multi-Hop Reasoning With Logical Rules on Biomedical Knowledge
Graphs [10.244651735862627]
我々は,創薬の現実世界における課題に基づいて経験的研究を行う。
我々は,この課題を,化合物と疾患の両方が知識グラフの実体に対応するリンク予測問題として定式化する。
本稿では,強化学習と論理ルールに基づく政策誘導歩行を組み合わせた新しい手法PoLoを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:46:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。