A Comparative Study on Self-Organization in Wireless Sensor Networks
- URL: http://arxiv.org/abs/2411.15690v2
- Date: Sat, 04 Jan 2025 23:03:56 GMT
- Title: A Comparative Study on Self-Organization in Wireless Sensor Networks
- Authors: Michael Simon, Salwa M. Din, Raja Jamal Chib,
- Abstract summary: Wireless sensor networks (WSNs) enable efficient resource utilization and open doors to numerous applications.<n>WSNs are susceptible to environmental factors in their deployment areas and may suffer damage.<n>To address these challenges and adapt to resource constraints, WSN mechanisms must exhibit self-organizing capabilities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With advancements in microelectromechanical systems, low-power integrated circuits, and wireless communications, wireless sensor networks (WSNs) have become increasingly significant [1][2]. These distributed networks enable efficient resource utilization and open doors to numerous applications, including personal healthcare, home automation, environmental monitoring, industrial automation, and defense surveillance. However, WSNs are susceptible to environmental factors in their deployment areas and may suffer damage. In such cases, the network must be reconfigured or repaired. To address these challenges and adapt to resource constraints, WSN mechanisms must exhibit self-organizing capabilities. For instance, in tasks like allocation, cooperative communication, and dynamic data collection, self-organization enhances the efficiency and robustness of WSNs across the application, network, and physical layers.
Related papers
- Towards Zero Touch Networks: Cross-Layer Automated Security Solutions for 6G Wireless Networks [39.08784216413478]
This paper proposes an automated security framework targeting Physical Layer Authentication and Cross-Layer Intrusion Detection Systems.
The proposed framework employs drift-adaptive online learning techniques and a novel enhanced Successive Halving (SH)-based Automated ML (AutoML) method to automatically generate optimized ML models for dynamic networking environments.
arXiv Detail & Related papers (2025-02-28T01:16:11Z) - Data-driven Modality Fusion: An AI-enabled Framework for Large-Scale Sensor Network Management [0.49998148477760973]
This paper introduces a novel sensing paradigm called Data-driven Modality Fusion (DMF)
By leveraging correlations between timeseries data from different sensing modalities, the proposed DMF approach reduces the number of physical sensors required for monitoring.
The framework relocates computational complexity from the edge devices to the core, ensuring that resource-constrained IoT devices are not burdened with intensive processing tasks.
arXiv Detail & Related papers (2025-02-07T14:00:04Z) - Will 6G be Semantic Communications? Opportunities and Challenges from
Task Oriented and Secure Communications to Integrated Sensing [49.83882366499547]
This paper explores opportunities and challenges of task (goal)-oriented and semantic communications for next-generation (NextG) networks through the integration of multi-task learning.
We employ deep neural networks representing a dedicated encoder at the transmitter and multiple task-specific decoders at the receiver.
We scrutinize potential vulnerabilities stemming from adversarial attacks during both training and testing phases.
arXiv Detail & Related papers (2024-01-03T04:01:20Z) - Sensor Placement for Learning in Flow Networks [6.680930089714339]
This paper investigates the sensor placement problem for networks.
We first formalize the problem under a flow conservation assumption and show that it is NP-hard to place a fixed set of sensors optimally.
Next, we propose an efficient and adaptive greedy for sensor placement that scales to large networks.
arXiv Detail & Related papers (2023-12-12T01:08:08Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Towards Intelligent Network Management: Leveraging AI for Network
Service Detection [0.0]
This study focuses on leveraging Machine Learning methodologies to create an advanced network traffic classification system.
We introduce a novel data-driven approach that excels in identifying various network service types in real-time.
Our system demonstrates a remarkable accuracy in distinguishing the network services.
arXiv Detail & Related papers (2023-10-14T16:06:11Z) - Leveraging Low-Rank and Sparse Recurrent Connectivity for Robust
Closed-Loop Control [63.310780486820796]
We show how a parameterization of recurrent connectivity influences robustness in closed-loop settings.
We find that closed-form continuous-time neural networks (CfCs) with fewer parameters can outperform their full-rank, fully-connected counterparts.
arXiv Detail & Related papers (2023-10-05T21:44:18Z) - Causal Reasoning: Charting a Revolutionary Course for Next-Generation
AI-Native Wireless Networks [63.246437631458356]
Next-generation wireless networks (e.g., 6G) will be artificial intelligence (AI)-native.
This article introduces a novel framework for building AI-native wireless networks; grounded in the emerging field of causal reasoning.
We highlight several wireless networking challenges that can be addressed by causal discovery and representation.
arXiv Detail & Related papers (2023-09-23T00:05:39Z) - Emergent Communication in Multi-Agent Reinforcement Learning for Future
Wireless Networks [30.678152524314225]
Multi-agent reinforcement learning with emergent communication (EC-MARL) is a promising solution to address high dimensional continuous control problems.
This paper articulates the importance of EC-MARL within the context of future 6G wireless networks, which imbues autonomous decision-making capabilities into network entities.
arXiv Detail & Related papers (2023-09-12T07:40:53Z) - A Deep Reinforcement Learning-based Adaptive Charging Policy for
Wireless Rechargeable Sensor Networks [14.67786743033424]
Wireless power transfer technology is emerging as a reliable solution for energizing the sensors.
We propose a novel adaptive charging scheme using a deep reinforcement learning (DRL) approach.
Our model can adapt to spontaneous changes in the network topology.
arXiv Detail & Related papers (2022-08-16T16:10:52Z) - AI in 6G: Energy-Efficient Distributed Machine Learning for Multilayer
Heterogeneous Networks [7.318997639507269]
We propose a novel layer-based HetNet architecture which distributes tasks associated with different machine learning approaches across network layers and entities.
Such a HetNet boasts multiple access schemes as well as device-to-device (D2D) communications to enhance energy efficiency.
arXiv Detail & Related papers (2022-06-04T22:03:19Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - An Online Ensemble Learning Model for Detecting Attacks in Wireless
Sensor Networks [0.0]
We develop an intelligent, efficient, and updatable intrusion detection system by applying an important machine learning concept known as ensemble learning.
In this paper, we examine the application of different homogeneous and heterogeneous online ensembles in sensory data analysis.
Among the proposed novel online ensembles, both the heterogeneous ensemble consisting of an Adaptive Random Forest (ARF) combined with the Hoeffding Adaptive Tree (HAT) algorithm and the homogeneous ensemble HAT made up of 10 models achieved higher detection rates of 96.84% and 97.2%, respectively.
arXiv Detail & Related papers (2022-04-28T23:10:47Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
This work provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms.
The application of AI to a wide variety of satellite communication aspects have demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing.
arXiv Detail & Related papers (2021-01-25T13:01:16Z) - Decentralized Control with Graph Neural Networks [147.84766857793247]
We propose a novel framework using graph neural networks (GNNs) to learn decentralized controllers.
GNNs are well-suited for the task since they are naturally distributed architectures and exhibit good scalability and transferability properties.
The problems of flocking and multi-agent path planning are explored to illustrate the potential of GNNs in learning decentralized controllers.
arXiv Detail & Related papers (2020-12-29T18:59:14Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC) and massive machine-type communications (mMTC)
On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in 3D space.
On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference.
arXiv Detail & Related papers (2020-10-19T08:56:04Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z) - Intelligent Reflecting Surface Aided Wireless Communications: A Tutorial [64.77665786141166]
Intelligent reflecting surface (IRS) is an enabling technology to engineer the radio signal prorogation in wireless networks.
IRS is capable of dynamically altering wireless channels to enhance the communication performance.
Despite its great potential, IRS faces new challenges to be efficiently integrated into wireless networks.
arXiv Detail & Related papers (2020-07-06T13:59:09Z) - Deep Learning for Radio Resource Allocation with Diverse
Quality-of-Service Requirements in 5G [53.23237216769839]
We develop a deep learning framework to approximate the optimal resource allocation policy for base stations.
We find that a fully-connected neural network (NN) cannot fully guarantee the requirements due to the approximation errors and quantization errors of the numbers of subcarriers.
Considering that the distribution of wireless channels and the types of services in the wireless networks are non-stationary, we apply deep transfer learning to update NNs in non-stationary wireless networks.
arXiv Detail & Related papers (2020-03-29T04:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.