論文の概要: Navigating the Effect of Parametrization for Dimensionality Reduction
- arxiv url: http://arxiv.org/abs/2411.15894v1
- Date: Sun, 24 Nov 2024 16:05:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:23:14.295883
- Title: Navigating the Effect of Parametrization for Dimensionality Reduction
- Title(参考訳): 次元化におけるパラメトリゼーションの効果
- Authors: Haiyang Huang, Yingfan Wang, Cynthia Rudin,
- Abstract要約: パラメトリックな手法はグローバルな構造を保ちながら,重要な局所的な詳細を欠いていることを示す。
我々は,強い反発力を持つ損失関数とハード負のマイニングを組み込んだ新しいパラメトリック手法であるParamRepulsorを開発した。
- 参考スコア(独自算出の注目度): 21.17720365775607
- License:
- Abstract: Parametric dimensionality reduction methods have gained prominence for their ability to generalize to unseen datasets, an advantage that traditional approaches typically lack. Despite their growing popularity, there remains a prevalent misconception among practitioners about the equivalence in performance between parametric and non-parametric methods. Here, we show that these methods are not equivalent -- parametric methods retain global structure but lose significant local details. To explain this, we provide evidence that parameterized approaches lack the ability to repulse negative pairs, and the choice of loss function also has an impact. Addressing these issues, we developed a new parametric method, ParamRepulsor, that incorporates Hard Negative Mining and a loss function that applies a strong repulsive force. This new method achieves state-of-the-art performance on local structure preservation for parametric methods without sacrificing the fidelity of global structural representation. Our code is available at https://github.com/hyhuang00/ParamRepulsor.
- Abstract(参考訳): パラメトリック次元減少法は、従来のアプローチが典型的に欠如していることの利点として、目に見えないデータセットに一般化する能力で有名になった。
人気の高まりにもかかわらず、パラメトリックな手法と非パラメトリックな手法の同等性について、実践者の間ではよく誤解されている。
ここでは,これらの手法は等価ではなく,パラメトリックな手法はグローバルな構造を保ちながら,重要な局所的詳細を欠いていることを示す。
これを説明するために、パラメータ化されたアプローチには負のペアを撃退する能力がなく、損失関数の選択にも影響があることを示す。
これらの問題に対処するため,我々は,強い反発力を適用した強い負の鉱業と損失関数を組み込んだ新しいパラメトリック手法であるParamRepulsorを開発した。
本手法は,グローバルな構造表現の忠実さを犠牲にすることなく,パラメトリック手法の局所構造保存における最先端性能を実現する。
私たちのコードはhttps://github.com/hyhuang00/ParamRepulsor.comから入手可能です。
関連論文リスト
- Instance-Specific Asymmetric Sensitivity in Differential Privacy [2.855485723554975]
我々は指数的メカニズムを通して出力を選択するためのパラダイムを提供する以前の作業の上に構築する。
我々のフレームワークは、近接度メートル法をわずかに修正し、スパースベクトル技法の単純かつ効率的な応用を提供する。
論文 参考訳(メタデータ) (2023-11-02T05:01:45Z) - Nonparametric Classification on Low Dimensional Manifolds using
Overparameterized Convolutional Residual Networks [82.03459331544737]
非パラメトリック分類の観点から重量減衰を訓練したConvResNeXtsの性能について検討した。
我々の分析は、ConvResNeXtsにおいて無限に多くのビルディングブロックを許容し、重み減衰がこれらのブロックに空間性を暗黙的に強制することを示す。
論文 参考訳(メタデータ) (2023-07-04T11:08:03Z) - Parameter-Efficient Fine-Tuning without Introducing New Latency [7.631596468553607]
隠れ表現の代わりに事前学習パラメータに直接アダプタを適用する新しいアダプタ技術を導入する。
提案手法は,性能と記憶効率の両面で新たな最先端性を実現し,完全微調整のパラメータは0.03%に過ぎなかった。
論文 参考訳(メタデータ) (2023-05-26T08:44:42Z) - Joint Metrics Matter: A Better Standard for Trajectory Forecasting [67.1375677218281]
マルチモーダル・トラジェクトリ・予測法 : シングルエージェント・メトリクス(マージナル・メトリクス)を用いた評価
余分な指標にのみ注目することは、グループとして明確に一緒に歩いている人々のために、軌跡の衝突や軌跡のばらつきといった、不自然な予測につながる可能性がある。
本稿では,JADE,JFDE,衝突速度といったマルチエージェントメトリクス(ジョイントメトリクス)に関して,最先端トラジェクトリ予測手法の総合評価を行った。
論文 参考訳(メタデータ) (2023-05-10T16:27:55Z) - An evaluation framework for dimensionality reduction through sectional
curvature [59.40521061783166]
本研究は,非教師付き次元減少性能指標を初めて導入することを目的としている。
その実現可能性をテストするために、この測定基準は最もよく使われる次元削減アルゴリズムの性能を評価するために用いられている。
新しいパラメータ化問題インスタンスジェネレータが関数ジェネレータの形式で構築されている。
論文 参考訳(メタデータ) (2023-03-17T11:59:33Z) - Non-parametric Binary regression in metric spaces with KL loss [15.178937896363452]
そこでは,パラメータ空間を [0,1] とするリプシッツ関数として仮説を正規化し,損失を対数とする二項回帰の非パラメトリック変項を提案する。
この設定は、新しい計算と統計の課題を提示する。
論文 参考訳(メタデータ) (2020-10-19T21:42:26Z) - Facilitate the Parametric Dimension Reduction by Gradient Clipping [1.9671123873378715]
我々は、ニューラルネットワークのトレーニングにより、非パラメトリックからパラメトリックへ、よく知られた次元削減手法であるt分散隣接埋め込み(t-SNE)を拡張した。
本手法は, 一般化を楽しみながら, 非パラメトリックt-SNEと互換性のある埋め込み品質を実現する。
論文 参考訳(メタデータ) (2020-09-30T01:21:22Z) - Doubly Robust Semiparametric Difference-in-Differences Estimators with
High-Dimensional Data [15.27393561231633]
不均一な治療効果を推定するための2段半パラメトリック差分差分推定器を提案する。
第1段階では、確率スコアを推定するために、一般的な機械学習手法が使用できる。
第2段階ではパラメトリックパラメータと未知関数の両方の収束率を導出する。
論文 参考訳(メタデータ) (2020-09-07T15:14:29Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
次元削減法は、高次元データの可視化と解釈に有用な手段を提供する。
多くの一般的な手法は単純な2次元のマニフォールドでも劇的に失敗する。
本稿では,グローバルな構造を座標として組み込んだ,新しいインクリメンタルな空間推定器の埋め込み手法を提案する。
実験により,本アルゴリズムは実世界および合成データセットに新規で興味深い埋め込みを復元することを示した。
論文 参考訳(メタデータ) (2020-07-07T10:04:28Z) - Deep Dimension Reduction for Supervised Representation Learning [51.10448064423656]
本研究は,本質的な特徴を持つ学習表現の次元削減手法を提案する。
提案手法は, 十分次元還元法の非パラメトリック一般化である。
推定された深度非パラメトリック表現は、その余剰リスクが0に収束するという意味で一貫したものであることを示す。
論文 参考訳(メタデータ) (2020-06-10T14:47:43Z) - Efficient Policy Learning from Surrogate-Loss Classification Reductions [65.91730154730905]
本稿では,政策学習におけるサロゲート-ロス分類の重み付けによる推定問題について考察する。
適切な仕様の仮定の下では、重み付けされた分類定式化はポリシーパラメーターに対して効率的でないことが示される。
本稿では,ポリシーパラメータに対して効率的なモーメントの一般化手法に基づく推定手法を提案する。
論文 参考訳(メタデータ) (2020-02-12T18:54:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。