Enhancing Symbolic Regression and Universal Physics-Informed Neural Networks with Dimensional Analysis
- URL: http://arxiv.org/abs/2411.15919v1
- Date: Sun, 24 Nov 2024 17:07:39 GMT
- Title: Enhancing Symbolic Regression and Universal Physics-Informed Neural Networks with Dimensional Analysis
- Authors: Lena Podina, Diba Darooneh, Joshveer Grewal, Mohammad Kohandel,
- Abstract summary: We present a new method for enhancing symbolic regression for differential equations via dimensional analysis.
We integrate Ipsen's method of dimensional analysis with Universal Physics-Informed Neural Networks.
We show that transforming data into a dimensionless form significantly decreases time and improves accuracy of computation.
- Score: 0.7864304771129751
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new method for enhancing symbolic regression for differential equations via dimensional analysis, specifically Ipsen's and Buckingham pi methods. Since symbolic regression often suffers from high computational costs and overfitting, non-dimensionalizing datasets reduces the number of input variables, simplifies the search space, and ensures that derived equations are physically meaningful. As our main contribution, we integrate Ipsen's method of dimensional analysis with Universal Physics-Informed Neural Networks. We also combine dimensional analysis with the AI Feynman symbolic regression algorithm to show that dimensional analysis significantly improves the accuracy of the recovered equation. The results demonstrate that transforming data into a dimensionless form significantly decreases computation time and improves accuracy of the recovered hidden term. For algebraic equations, using the Buckingham pi theorem reduced complexity, allowing the AI Feynman model to converge faster with fewer data points and lower error rates. For differential equations, Ipsen's method was combined with Universal Physics-Informed Neural Networks (UPINNs) to identify hidden terms more effectively. These findings suggest that integrating dimensional analysis with symbolic regression can significantly lower computational costs, enhance model interpretability, and increase accuracy, providing a robust framework for automated discovery of governing equations in complex systems when data is limited.
Related papers
- PINNverse: Accurate parameter estimation in differential equations from noisy data with constrained physics-informed neural networks [0.0]
Physics-Informed Neural Networks (PINNs) have emerged as effective tools for solving such problems.
We introduce PINNverse, a training paradigm that addresses these limitations by reformulating the learning process as a constrained differential optimization problem.
We demonstrate robust and accurate parameter estimation from noisy data in four classical ODE and PDE models from physics and biology.
arXiv Detail & Related papers (2025-04-07T16:34:57Z) - Discovering symbolic expressions with parallelized tree search [59.92040079807524]
Symbolic regression plays a crucial role in scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data.
Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity.
We introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data.
arXiv Detail & Related papers (2024-07-05T10:41:15Z) - An Efficient Approach to Regression Problems with Tensor Neural Networks [5.345144592056051]
This paper introduces a tensor neural network (TNN) to address nonparametric regression problems.
The TNN demonstrates superior performance compared to conventional Feed-Forward Networks (FFN) and Radial Basis Function Networks (RBN)
A significant innovation in our approach is the integration of statistical regression and numerical integration within the TNN framework.
arXiv Detail & Related papers (2024-06-14T03:38:40Z) - SymbolNet: Neural Symbolic Regression with Adaptive Dynamic Pruning [1.0356366043809717]
We propose a neural network approach to symbolic regression in a novel framework that allows dynamic pruning of model weights, input features, and mathematical operators in a single training process.
Our approach enables symbolic regression to achieve fast inference with nanosecond-scale latency on FPGAs for high-dimensional datasets in environments with stringent computational resource constraints.
arXiv Detail & Related papers (2024-01-18T12:51:38Z) - Deep Generative Symbolic Regression [83.04219479605801]
Symbolic regression aims to discover concise closed-form mathematical equations from data.
Existing methods, ranging from search to reinforcement learning, fail to scale with the number of input variables.
We propose an instantiation of our framework, Deep Generative Symbolic Regression.
arXiv Detail & Related papers (2023-12-30T17:05:31Z) - Symplectic Autoencoders for Model Reduction of Hamiltonian Systems [0.0]
It is crucial to preserve the symplectic structure associated with the system in order to ensure long-term numerical stability.
We propose a new neural network architecture in the spirit of autoencoders, which are established tools for dimension reduction.
In order to train the network, a non-standard gradient descent approach is applied.
arXiv Detail & Related papers (2023-12-15T18:20:25Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Slow Invariant Manifolds of Singularly Perturbed Systems via
Physics-Informed Machine Learning [0.0]
We present a physics-informed machine-learning (PIML) approach for the approximation of slow invariant manifold (SIMs) of singularly perturbed systems.
We show that the proposed PIML scheme provides approximations, of equivalent or even higher accuracy, than those provided by other traditional GSPT-based methods.
A comparison of the computational costs between symbolic, automatic and numerical approximation of the required derivatives in the learning process is also provided.
arXiv Detail & Related papers (2023-09-14T14:10:22Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Deep Learning and Symbolic Regression for Discovering Parametric
Equations [5.103519975854401]
We propose a neural network architecture to extend symbolic regression to parametric systems.
We demonstrate our method on various analytic expressions, ODEs, and PDEs with varying coefficients.
We integrate our architecture with convolutional neural networks to analyze 1D images of varying spring systems.
arXiv Detail & Related papers (2022-07-01T16:25:59Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
We provide quantum procedures that speed-up the solution of eigenproblems for data representation in machine learning.
The power and practical use of these subroutines is shown through new quantum algorithms, sublinear in the input matrix's size, for principal component analysis, correspondence analysis, and latent semantic analysis.
Results show that the run-time parameters that do not depend on the input's size are reasonable and that the error on the computed model is small, allowing for competitive classification performances.
arXiv Detail & Related papers (2021-04-19T00:41:43Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.