論文の概要: From Dashcam Videos to Driving Simulations: Stress Testing Automated Vehicles against Rare Events
- arxiv url: http://arxiv.org/abs/2411.16027v2
- Date: Mon, 27 Jan 2025 17:43:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:52:24.790645
- Title: From Dashcam Videos to Driving Simulations: Stress Testing Automated Vehicles against Rare Events
- Title(参考訳): ダッシュカム動画から運転シミュレーションまで:ストレステスト自動化車両
- Authors: Yan Miao, Georgios Fainekos, Bardh Hoxha, Hideki Okamoto, Danil Prokhorov, Sayan Mitra,
- Abstract要約: 現実的な運転シナリオを用いたシミュレーションにおける自動運転システム(ADS)のテストは、その性能を検証する上で重要である。
本稿では,現実の自動車事故映像の詳細なシミュレーションシナリオへの変換を自動化する新しいフレームワークを提案する。
予備結果は,完全自動化と人的介入を伴わず,リアルタイム変換を数分で完了させるという,かなりの時間効率を示した。
- 参考スコア(独自算出の注目度): 5.132984904858975
- License:
- Abstract: Testing Automated Driving Systems (ADS) in simulation with realistic driving scenarios is important for verifying their performance. However, converting real-world driving videos into simulation scenarios is a significant challenge due to the complexity of interpreting high-dimensional video data and the time-consuming nature of precise manual scenario reconstruction. In this work, we propose a novel framework that automates the conversion of real-world car crash videos into detailed simulation scenarios for ADS testing. Our approach leverages prompt-engineered Video Language Models(VLM) to transform dashcam footage into SCENIC scripts, which define the environment and driving behaviors in the CARLA simulator, enabling the generation of realistic simulation scenarios. Importantly, rather than solely aiming for one-to-one scenario reconstruction, our framework focuses on capturing the essential driving behaviors from the original video while offering flexibility in parameters such as weather or road conditions to facilitate search-based testing. Additionally, we introduce a similarity metric that helps iteratively refine the generated scenario through feedback by comparing key features of driving behaviors between the real and simulated videos. Our preliminary results demonstrate substantial time efficiency, finishing the real-to-sim conversion in minutes with full automation and no human intervention, while maintaining high fidelity to the original driving events.
- Abstract(参考訳): 現実的な運転シナリオを用いたシミュレーションにおける自動運転システム(ADS)のテストは、その性能を検証する上で重要である。
しかし、実世界の運転映像をシミュレーションシナリオに変換することは、高次元映像データの解釈の複雑さと正確な手動のシナリオ再構成の時間的特性により大きな課題である。
本研究では,ADSテストの詳細なシミュレーションシナリオに現実のカークラッシュ映像を自動変換する新しいフレームワークを提案する。
提案手法は,ビデオ言語モデル(VLM)を利用して,映像をSCENICスクリプトに変換し,CARLAシミュレータの環境と運転行動を定義し,現実的なシミュレーションシナリオの生成を可能にする。
重要なことに,本フレームワークは,1対1のシナリオ再構築を目的とするのではなく,オリジナルビデオから本質的な運転行動を捉えつつ,天気や道路条件などのパラメータの柔軟性を提供し,検索ベースのテストを容易にすることに焦点を当てている。
さらに,実写映像とシミュレート映像の駆動動作の重要な特徴を比較することで,フィードバックを通じて生成シナリオを反復的に洗練する類似度指標を提案する。
予備的な結果から、実時間変換を完全自動化し、人間の介入なしに数分で完了し、元の運転イベントに対して高い忠実さを維持しながら、相当な時間効率を示すことができた。
関連論文リスト
- DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation [54.02069690134526]
本研究では,現実的でクローズドループなシミュレーションフレームワークであるDrivingSphereを提案する。
その中核となる考え方は、4Dの世界表現を構築し、実生活と制御可能な運転シナリオを生成することである。
動的で現実的なシミュレーション環境を提供することで、DrivingSphereは自律運転アルゴリズムの包括的なテストと検証を可能にする。
論文 参考訳(メタデータ) (2024-11-18T03:00:33Z) - GenDDS: Generating Diverse Driving Video Scenarios with Prompt-to-Video Generative Model [6.144680854063938]
GenDDSは、自律運転システムの運転シナリオを生成するための新しいアプローチである。
我々は、実際の運転ビデオを含むKITTIデータセットを使用して、モデルをトレーニングする。
実世界の運転シナリオの複雑さと変動性を密に再現した高品質な運転映像を,我々のモデルで生成できることを実証した。
論文 参考訳(メタデータ) (2024-08-28T15:37:44Z) - UniSim: A Neural Closed-Loop Sensor Simulator [76.79818601389992]
センサ搭載車両によって記録された1つのログをキャプチャする、ニューラルネットワークシミュレータUniSimを提示する。
UniSimは、静的バックグラウンドと動的アクターの両方を再構築するために、ニューラルネットワーク機能グリッドを構築する。
動的オブジェクトの学習可能な事前情報を組み込んで、畳み込みネットワークを利用して未確認領域を完成させる。
論文 参考訳(メタデータ) (2023-08-03T17:56:06Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - SimNet: Learning Reactive Self-driving Simulations from Real-world
Observations [10.035169936164504]
運転体験を現実的にシミュレートできるエンドツーエンドのトレーニング可能な機械学習システムを提案する。
これは、高価で時間を要する道路テストに頼ることなく、自動運転システムのパフォーマンスの検証に使用できる。
論文 参考訳(メタデータ) (2021-05-26T05:14:23Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
DriveGANと呼ばれる新しい高品質のニューラルシミュレータを紹介します。
DriveGANは、異なるコンポーネントを監督なしで切り離すことによって制御性を達成する。
実世界の運転データ160時間を含む複数のデータセットでdriveganをトレーニングします。
論文 参考訳(メタデータ) (2021-04-30T15:30:05Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
センサシミュレーションは高価であり,領域ギャップが大きいため,センサシミュレーションに代わる方法を提案する。
我々は、自動運転車の知覚と予測システムの出力を直接シミュレートし、現実的な動き計画テストを可能にする。
論文 参考訳(メタデータ) (2020-08-13T17:20:02Z) - A machine learning environment for evaluating autonomous driving
software [1.6516902135723865]
自動運転車のコーナーケース動作を検出するための機械学習環境を提案する。
我々の環境は、CARLAシミュレーションソフトウェアを機械学習フレームワークとカスタムAIクライアントソフトウェアに接続することに基づいている。
我々のシステムは、車両AIが状況を正確に理解できないコーナーケースを探索することができる。
論文 参考訳(メタデータ) (2020-03-07T13:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。